Главная - Устройство
Как проверить симистор мультиметром, чтобы не покупать новую деталь? Методы проверки тиристоров на исправность Как проверить тиристор батарейкой и лампочкой

Тиристор представляет собой особую разновидность полупроводникового прибора, изготовленного на основе монокристалла полупроводника и имеющего не менее трех p-n-переходов. Способен находиться в двух различных устойчивых состояниях: закрытый тиристор обладает низкой степенью проводимости, а в открытом состоянии проводимость становится высокой.

По своей сути, он является силовым электронным ключом без полного управления.

Инструменты и материалы для проверки

Для осуществления проверки прибора, могут потребоваться следующие инструменты и материалы, в зависимости от выбранного метода тестирования:

  • блок питания или батарея, которые будут выступать в роли источника постоянного напряжения;
  • лампа накаливания;
  • провода;
  • омметр;
  • тестер;
  • паяльный аппарат;
  • паяльный аппарат;

Также, для тестирования правильности работы тиристора может потребоваться наличие пробника, который можно изготовить своими руками.

Для него потребуется наличие следующих материалов и элементов:

  • плата;
  • резисторы, количество 8 штук;
  • конденсаторы, количество 10 штук;
  • , количество 3 штуки;
  • положительный и отрицательный стабилизатор;
  • лампа накаливания;
  • предохранитель;
  • тумблер, количество 2 штуки;

Существует целый ряд возможных схем для изготовления пробника, выбрать можно любую, но необходимо следовать следующим рекомендациям:

  1. Соединение всех элементов производится при помощи специальных проводов с зажимами.
  2. Необходимо последовательно контролировать напряжение между различными контактами. Для осуществления проверки допускается подключение переключателей к разным контактным группам.
  3. После сбора схемы необходимо осуществить подключение тиристора, если он находится в исправном состоянии, то лампа накаливания не будет включаться.
  4. Если лампочка не зажигается даже после нажатия пусковой кнопки, то необходимо при помощи установленного переключателя повысить величину управляющего электрического тока.При разрыве соответствующей цепи, лампочка гаснет.

Способы проверки

Существует целый ряд различный способов, позволяющих проверять тиристоры, наиболее простым является тестирование с помощью лампы накаливания и источника, дающего постоянное напряжение.

Реализовать данный процесс можно следующим образом:

  1. Провода необходимо припаять к выводам тиристора таким образом, чтобы на анод подавался плюс от питающего элемента, а минус был подключен к лампочке, а уже через нее к катоду.
  2. На управляющий электрод прибора потребуется подать напряжение, которое будет превышать аналогичный показатель для анода на 0,2В, благодаря этому действию тиристор перейдет в открытое состояние.
  3. Если прибор исправен и находится в рабочем состоянии, то лампочка должна зажечься.
  4. Для того, чтобы окончательно убедиться в исправном функционировании , необходимо перекрыть доступ источнику напряжения, открывшему тиристор, к управляющему электроду, после совершения этих действий лампочка не должна погаснуть.
  5. Чтобы вернуть устройство в закрытое состояние , необходимо полностью устранить питание либо осуществить подачу отрицательного напряжения на электрод.

Ниже приводится пример проверки, которую можно осуществить в цепи переменного тока:

  1. Необходимо заменить напряжение , которое подается от блока питания или иного постоянного источника, на переменное напряжение с показателем 12В, использовать для этих целей можно специальный трансформатор.
  2. После осуществления данной процедуры , в исходном положении лампочка будет находиться в выключенном режиме.
  3. Проверка происходит путем нажатия пусковой кнопки , во время чего лампочка должна включаться, а при отжимании снова гаснуть.
  4. Во время тестирования , лампочка должна загораться только вполовину от своих возможностей накала, это обусловлено тем фактом, что тиристора достигает только положительная волна подаваемого от трансформатора переменного напряжения.
  5. Если в схеме присутствует , одна из основных разновидностей тиристора, то лампочка будет загораться в полную силу, поскольку он одинаково восприимчив к обеим полуволнам переменного напряжения.
тестер

Другим способом является осуществление проверки при помощи тестера, реализуется она следующим образом:

  1. Для осуществления предлагаемого тестирования достаточно энергии, которая будет получена от питания мини-тестера на 1,5В, находящегося в рабочем режиме х1 кОм.
  2. Требуется подключить щуп к аноду и затем произвести кратковременное прикосновение к управляющему электроду.
  3. После совершения названных действий проследить за реакцией стрелки, которая должна была отклониться от исходных показателей.
  4. Если после снятия щупа происходит возвращение стрелки на исходную позицию, то это свидетельствует о том, что тестируемый тиристор неспособен самостоятельно удерживаться в открытом состоянии.
  5. Иногда процесс проверки не получается с самого начала , в такой ситуации рекомендуется поменять щупы местами, поскольку у некоторых устройств переход в режим х1 кОм может вызвать изменение полярностей.

проверка мультиметром

Мультиметр представляет собой многофункциональное устройство, в которое входит, в том числе и омметр, с помощью него также можно осуществить соответствующую проверку:

  1. Первоначально , мультиметр должен быть переведен в режим прозвона.
  2. Щупы устанавливаются таким образом, чтобы плюс быть подключен на анод, а минус соответствовал катоду.
  3. Дисплей мультиметра должен показывать высокое напряжение, поскольку тиристор на данный момент находится в закрытом положении.
  4. На щупах имеется напряжение , поэтому можно подать плюс на управляющий электрод, для этого необходимо совершить кратковременное прикосновение соответствующим проводом от электрода к аноду.
  5. После совершенных действий , дисплей мультиметра должен начать показывать низкое напряжение, поскольку тиристор переходит в открытое состояние.
  6. Закрытие прибора произойдет снова , если убрать провод от электрода, этот процесс происходит из-за недостаточного количества электрического тока, который находится в щупах мультиметра. Исключение составляют отдельные разновидности тиристоров, например, которые задействованы в некоторых импульсных источниках питания ряда старых телевизоров, для них содержание тока будет достаточным, чтобы сохранить открытое состояние.

Использование омметра для проверки происходит по схожей схеме, поскольку современные модели обладают не стрелочным механизмом, а дисплеем, как у мультиметров. Подобная методика позволяет проводить тестирование исправного состояния полупроводниковых переходов без осуществления предварительного выпаивания тиристора из платы.

Устройство и принцип работы

Устройство тиристора выглядит следующим образом:

  1. 4 полупроводниковых элемента имеют последовательное соединение друг с другом, они различаются по типу проводимости.
  2. В конструкции имеется анод – контакт к внешнему слою полупроводника и катод, такой же контакт, но к внешнему n-слою.
  3. Всего имеются не более 2 управляющих электродов , которые подсоединены к внутренним слоям полупроводника.
  4. Если в устройстве полностью отсутствуют управляющие электроды , то такой прибор является особой разновидностью – динистором. При наличии 1 электрода, прибор относится к классу тринисторов. Управление может осуществляться через анод или катод, данный нюанс зависит от того, к какому слою был подключен управляющий электрод, но на сегодняшний день наиболее распространен второй вариант.
  5. Данные приборы могут подразделяться на виды , в зависимости от того, пропускают они электрический ток от анода к катоду или сразу в обоих направлениях. Второй вариант устройства получил название симметричные тиристоры, обычно состоящие из 5 полупроводниковых слоев, по своей сути они являются симисторами.
  6. При наличии в конструкции управляющего электрода , тиристоры могут быть разделены на запираемую и незапираемую разновидность. Отличие второго вида заключается в том, что такой прибор не может быть никаким способом переведен в закрытое состояние.


Принцип действия тиристора, подключенного к цепи постоянного тока, заключается в следующем:

  1. Включение прибора происходит благодаря получению цепью импульсов электрического тока. Подача происходит на полярность, которая является положительной относительно катода.
  2. На протяженность процесса перехода оказывает влияние целый ряд различных факторов: вид нагрузки; температура полупроводникового слоя; показатель напряжения; параметры тока нагрузки; скорость, с которой происходит нарастание управляющего тока и его амплитуда.
  3. Несмотря на значительную крутизну управляющего сигнала , скорость нарастания напряжения не должна достигать недопустимых показателей, поскольку это может вызвать внезапное отключение прибора.
  4. Принудительное отключение устройства может быть осуществлено разными способами, наиболее распространен вариант с подключением в схему коммутирующего конденсатора, обладающего обратной полярностью. Такое подключение может происходить благодаря наличию второго (вспомогательного) тиристора, который спровоцирует возникновение разряда на основной прибор. В таком случае, разрядный ток, прошедший через коммутирующий конденсатор, столкнется с прямым током основного прибора, что понизит его значение до нулевого показателя и вызовет отключение.

принцип работы

Немного отличается принцип действия тиристора, подключенного к цепи переменного тока:

  1. В таком положении прибор может осуществлять включение или отключение цепей с разными типами нагрузки, а также изменять значения электрического тока через нагрузку. Это происходит благодаря возможности тиристорного прибора изменять момент, в который осуществляется подача управляющего сигнала.
  2. При подключении тиристора в подобные цепи , применяется исключительно встречно-параллельное включение, поскольку он может проводить ток лишь в одном направлении.
  3. Показатели электрического тока изменяются благодаря внесению изменений в момент, когда происходит передача открывающих сигналов на тиристоры. Этот параметр регулируется при помощи специальной системы управления, относящейся к фазовой либо широтно-импульсной разновидности.
  4. При использовании фазового управления , кривая электрического тока будет обладать несинусоидальной формой, это также вызовет искажение формы и напряжения в электросети, от которой происходит питание внешних потребителей. Если они обладают высокой чувствительностью к высокочастотным помехам, то это может вызвать сбои в процессе функционирования.

Основные параметры тиристора

Для понимания принципов функционирования данного прибора и последующей работы с ним, необходимо знать его основные параметры, к которым относятся:

  1. Напряжение включения – это минимальный показатель анодного напряжения, при достижении которого тиристорное устройство перейдет в рабочий режим.
  2. Прямое напряжение – это показатель, определяющий падение напряжения при максимальном значении анодного электрического тока.
  3. Обратное напряжение – это показатель максимально допустимого значения напряжения, которое может быть оказано на устройство, когда оно находится в закрытом состоянии.
  4. Максимально допустимый прямой ток , под которым понимается его максимальное возможное значение во время, когда тиристор находится в открытом состоянии.
  5. Обратный ток , который возникает при максимальных показателях обратного напряжения.
  6. Время задержки перед включением или выключением устройства.
  7. Значение , определяющее максимальный показатель электрического тока для управления электродами.
  8. Максимально возможный показатель рассеиваемой мощности.


В завершение можно дать несколько следующих рекомендаций, которые могут пригодиться при осуществлении проверок тиристровых приборов:

  1. В отдельных ситуациях целесообразно проводить не только проверку исправности, но также и отбор тестируемых приборов по их параметрам. Для этого используется специальное оборудование, но сам процесс усложнен тем, что источник питания обязательно должен обладать напряжением на выходе с показателем не менее 1000В.
  2. Зачастую , проверка выполняется при помощи мультиметров или тестеров, поскольку такое тестирование организовать проще всего, но необходимо знать, что не все модели данных устройств способны осуществить открытие тиристора.
  3. Сопротивление пробитого тиристора чаще всего имеет показатели, близкие к нулю. По этой причине, кратковременное соединение анода исправного прибора с управляющим электродом показывает параметры сопротивления, которые свойственны короткому замыканию, а подобная процедура с неисправным тиристором не вызывает подобной реакции.

У каждого уважающего себя мастера, да и просто увлекающегося электроникой человека в хозяйстве есть мультиметр, который позволяет довольно часто экономить на покупке новых деталей.

Симистор, так же его называют триак — это особая вариация симметричного тиристора. Одним из основных отличий — возможность проводить ток в обоих направлениях, что позволяет использовать эксплуатировать радиоэлемент в системах, где присутствует переменное напряжение. В работе с электроприборами и схемами просто невозможно обойтись без таких электрических деталей.

По функциям работы и конструкции он ни чем не отличается от других тиристеров. Симисторы хорошо себя зарекомендовали как регуляторы для систем освещения, так же для приборов которые используются в бытовых условиях Еще его используют в огромном количестве отраслей производства.

Концепция этих компонентов чем-то напоминает работу транзистеров, но данные детали не будут взаимозаменяемы.

Когда подается ток (достаточно простой батарейки АА) — лампочка будет сиять. Из этого следует, что сама цепь не подвержена повреждениям. Затем следует отделить батарейку, но при этом не отключить подачу тока. Если лампочка не гаснет, а продолжает гореть, то p-n переход не поврежден и работает исправно.

Но бывает и такое, что в самый нужный момент под рукой не окажется нужной лампочки или батарейки. Остается проверить его мультиметром.

  1. Нужно установить переключатель на нашем приборе в режим прозвона. На щупах появится достаточно тока, для проверки работоспособности. На экране высветилась цифра 1, в таком случае мы понимаем, что переход не пробит и не поврежден.
  2. Нужно проверить открывается ли переход. Для этого нужно соединить управляющий вывод с анодом. Мультиметр даст достаточное количество тока для этого. На экране должны появится цифры, которые будут отличаться от первоначальной единицы. Так мы проверим работоспособность управляющего элемента.
  3. Разъединяем контакт управления. На экране увидим цифру «один», так как сопротивление будет склоняться к бесконечности.

Почему тиристор не остался в открытом состоянии?

Ситуация заключается в следующем — мультиметр не вырабатывает достаточное количество тока для того, что бы сработал тиристор. Исходя из этого, провести проверку данного элемента не выйдет. Но сама проверка показала, что остальные детали у нас в рабочем состоянии. Если же поменять полярность — проверка закончится провалом. В данной ситуации мы уверены,что отсутствует обратный пробой.

Так же при помощи аппарата, можно легко проверить чувствительность тиристора. Для этого нужно поставить переключатель в режим омметра. Все измерения проходят так же, как описывалось выше.

Тиристоры которые более чувствительны выдерживают открытое состояние при отключении управляющего тока, все данные мы фиксируем на мультиметре. Затем повышаем предел до 10х. В этой ситуации ток на щупах будет уменьшен.

Если управляющий ток при закрытии, отказывает, нужно постепенно увеличить предел измерения, до тех пор, пока не сработает тиристор.

Если проверка проходит элементов из одной партии или со схожими техническими характеристиками, нужно выбирать те элементы, которые более чувствительны. Такие тиристоры более функциональны и имеют больше возможностей, из этого следует что область применения в разы увеличивается.

Когда вы освоите проверку тиристора, то решение проверки симистора придет само. Главное вникнуть в суть проверки, и четко следовать инструкциям.

Проверка симистора мультиметром

Делаем все тоже, о чем говорилось выше. Можем применять лампу накаливания, включив мультиметр в режиме омметра.

Если симистор исправен и функционирует, то результаты проверки должны быть схожими между собой. Необходимо проверить открытие и удержание p-n перехода в обоих направлениях по всей шкале пределов измерения мультиметра.

Если проверяемая деталь располагается на монтажной плате, то нет явной необходимости выпаивать ее, для того, чтобы провести проверку. Нужно всего лишь освободить управляющий вывод. Одно из главных правил! Перед проверкой обязательно обесточьте проверяемый прибор, так как результат проверки, может оказаться неверным.

Заключение

Как мы видим, проблем в проверке у любого мастера быть не должно. Относительно проверки, можно добавить, то что проверять лучше всего симистор с обеих сторон, так как он работает как с одной, так и с другой стороны. Нужно все лишь изменить полярность на противоположную сторону. Если деталь исправна, то соответственно она будет работать с двух противоположных сторон.

Тиристоры как отдельный вид полупроводников, относится к категории диодов. Но в отличие от них, у тиристора есть третий вывод, предназначенный для выполнения задач управляющего электрода.

В фактическом понимании – диод с тремя выводами. Такие полупроводниковые устройства широко применяются и в бытовых приборах, и в регуляторах мощности всевозможных источников света.

Учитывая масштабы использования тиристора, многие домашние мастера сталкиваются с проблемой выхода устройства из строя, но, как и чем его протестировать не знают. Итак, для начала, нужно понять, что это такое и каков его принцип действия.

Что такое тиристор

Тиристор представляет собой одну из разновидностей полупроводниковых приборов, использующих в основе своей работы p-n – переходы. Это электронный ключ, при помощи которого можно регулировать мощную нагрузку с использованием слабых сигналов.

На рынке электротоваров полупроводниковые устройства представлены в достаточно широком ассортименте, классификация которых осуществляется с учетом метода управления и от проводимости:

  • Динистор (диодный радиоэлемент) – оснащен двумя выводами, а переключение в открытое положение происходит за счет импульсов напряжения с конкретной амплитудой;
  • Триодный прибор – не способен пропускать в обратном направлении, он функционирует за счет пульсации тока управления, а процесс выключения происходит или при подаче обратного напряжения, или отключением тока в открытом положении. Учитывая коммутационные параметры, устройства бывают и низкочастотными, и высокочастотными, и быстродействующими, и импульсными;
  • Запираемый тиристор – отключение производится за счет импульсов тока управления (относительно триодного прибора отключается быстрее);
  • Комбинированно-выключаемый радиоэлемент – отключается при подаче импульса тока управления при одновременном приложении обратного анодного напряжения;
  • Симистор-устройство с тремя электродами с пятислойной структурой, которое способно в открытом состоянии пропускать ток, и в прямом направлении, и в обратном;
  • Оптотиристор-радиоэлемент со встроенным светодиодом, за счет которого происходит управление от светового сигнала.

Полупроводниковые приборы данной категории активно используются в составе электронных ключей, выпрямителей, преобразователей, электронном зажигании, регуляторах мощности.

Принцип работы

Тиристоры подразделяются на:

  • устройства, пропускающие ток в прямом направлении – от «анода» к «катоду»;
  • устройства, пропускающие ток в обоих направлениях.

Работа переключающегося радиоэлемента сводится к выполнению функции ключа. На управляющий электрод подается команда, благодаря которой устройство получает соответствующее положение: открытый или закрытый.

Помимо этого, устройства данной категории классифицируют на запираемые и незапираемые.

Функционирование запираемых радиоэлементов было описана выше. Незапираемые полупроводниковые изделия переводятся в закрытый режим не за счет команды на управляющем электроде, а при условии, что проходящий через «анод» и «катод» ток принимает величину меньшую, чем ток удержания.

Чем можно проверить

Протестировать работоспособность полупроводника можно следующими способами:

  • Метод с применением обычной низковольтной лампочки и батарейки. Для этого потребуются: лампочка, три проводка и блок питания с постоянным током. Первым делом выставляется конкретное для загорания лампочки напряжение на блоке питания. Затем к каждому из электродов нужно припаять проводок. Посредством блока питания подается плюс на анод, а минус на катод. После чего, посредством батарейки на 1,5В происходит подача напряжения на управляющий электрод. В качестве индикатора здесь выступает лампочка, если она засветилась, то, переключающийся радиоэлемент функционирует в штатном режиме.
  • Метод с использованием мультиметра, омметра или тестера. Это наиболее привычный и стандартный способ проверки, где анод и управляющий электрод (его контакты) подключаются к измерительному прибору. Здесь в качестве источника тока выступают батареи прибора, а отклонение стрелки (у аналоговых моделей) либо цифровые показания на экране (у цифровых изделий) используются как показатели исправности/неисправности устройства. Если прибор показывает большое сопротивление, значит, устройство закрыто, если же указывает на небольшие величины – открыто.
  • Метод с применением двух стрелочных тестеров – омметров. В этом случае два отрицательных вывода с омметров подключаются к катоду тиристора. Положительный вывод одного из омметров подключается к аноду. Сопротивление на табло этого омметра стремится к бесконечности. Как только, положительный вывод другого омметра кратковременно подключается к управляющему электроду тиристора сопротивление предыдущего омметра сразу уменьшается до нескольких десятков Ом поскольку происходит отпирание тиристора.

Как проверить

Учитывая частый выход радиоэлемента из строя, для своевременного нахождения причины неисправности, желательно иметь удобный комбинированный измерительный прибор либо упрощенной модификации, либо цифрового исполнения.

Чтобы получить достоверный результат при проверке, рекомендуется собрать специальное приспособление по предложенной схеме.

Описание схемы

Структура тиристора включает в себя, четыре чередующихся слоя p и n типа проводимости p1n1p2n2. Между слоями образуются электронно-дырочные переходы. Слои p1 и n2 и переходы p1n1 и p2n2 получили название эмиттерных, внутренние слои n1 и p2 и переход между ними являются базовыми, а переход между ними – коллекторный.

Подключение к схеме тиристора возможно благодаря трем выводам:

  • «Анод» – отвод от слоя p1. На него подается сигнал положительной полярности;
  • «Катод» – отвод от слоя n2. К нему подключается провод с отрицательной полярностью;
  • «Управляющий электрод» – отвод от слоя n1. На него подается управляющий сигнал, благодаря которому данный радиоэлемент приводится в рабочее состояние. (Исключение составляют динисторы – у них только два вывода и нет управляющего вывода).

Для проверочных работ над устройствами малой и средней мощности необходимо произвести подачу напряжения на выводы «анод» и «катод», а на управляющий электрод пустить кратковременный сигнал для открытия проводимости между «анодом» и «катодом».

В мультиметре при установке положения измерения сопротивления между щупами возникает напряжение. Можно воспользоваться им при тестировании прибора.

Пошаговое руководство

  1. На катодный отвод тиристора подсоединить черный щуп с отрицательным значением.
  2. На анодный конец тиристора прикрепить красный щуп с положительным значением.
  3. К управляющему электроду подключить выключатель, а другой конец выключателя подсоединить к мультиметру в гнездо с красным щупом.
  4. Установить мультиметр в положение измерения сопротивления в пределах не более 2000 Ом.
  5. Включить выключатель кратковременно и через несколько секунд отключить его.
  6. Проверить удерживается ли прохождение тока. Если да, то тиристор исправен. Для отключения его достаточно прекратить подачу напряжения на «катод» или «анод».
  7. Если данная процедура не дала результата, т.е. проводимость не удерживается, то необходимо выключатель переставить на черный щуп вместо красного и снова повторить пункты 4-6.
  8. Если и в этом случае нет удержания прохождения тока, то тиристор не годится к применению.

Как проверить не выпаивая

Для проверки полупроводникового прибора без выпаивания почти из любой схемы вполне может подойти вышеуказанный метод с применением мультиметра, только необходимо отключить управляющий электрод из цепей схемы.

  1. Прежде чем, начать тестировать тиристор, необходимо ознакомиться с его техническими характеристиками и принципом работы. Именно эти познания помогут точно оценить результаты проверки.
  2. Стандартный мультимер вполне подходит для проверки работоспособности данного радиоэлемента, но современный цифровой прибор отличается не только точностью показаний, но и удобством при эксплуатации.
  3. Собирать измерительное приспособление нужно в полном соответствии с предложенной схемой.

Как проверить тиристор

Тиристор - это одна из разновидностей полупроводниковых приборов. Внешне он напоминает обыкновенный диод , но в отличие от простого диода он может работать как ключ: открываться и закрываться. Поэтому кроме анода и катода у него имеется еще и третий вывод- для управления. Его так и называют: управляющий электрод (сокращенно УЭ)
В общем-то тиристоры это целый подкласс диодов: они тоже имеют разновидности-
а. просто тиристор : в открытом состоянии пропускает ток лишь в одну сторону
б. симистор или симметричный тиристор: в открытом состоянии может пропускать ток в обе стороны.
г. динистор : не имеет управляющего электрода и управляется приложенным к нему напряжением. Главный параметр у динистора- это так называемое пробивное напряжение: порог при котором динистор открывается и начинает пропускать ток.

Структура тиристора выглядит так:
Так он обозначается на схемах:

Тиристоры по мощности бывают, конечно-же, разные: повышенной мощности (силовые). Такие тиристоры рассчитаны на очень большой ток и выглядят приблизительно так:


Есть тиристоры и поменьше- для бытовой аппаратуры и, конечно, для радиолюбительских целей. Внешний вид у них может быть разный:

Ну теперь давайте разберемся . В качестве примера возьмем самый распространенный советский тиристор КУ202Н. Он выглядит так:

Для проверки нам понадобятся: блок питания с постоянным напряжением, лампочка, и еще один источник питания- например батарейка.

Припаиваем в выводам тиристора провода, на анод подаем плюс от источника питания, а минус подключаем через лампочку к катоду как на картинке ниже:



Теперь нам нужно тиристор "отпереть". Для того чтобы открыть тиристор необходимо на его управляющий электрод подать напряжение больше чем на аноде на 0,2V.
Для этого можно поступить двумя способами:
1. использовать отдельный источник питания . например батарейку. Если тиристор исправный, то лампочка должна загореться. См картинку:



2. Можно открыть тиристор мультиметром : для этого устанавливаем мультиметр в режим прозвонки- на его выводах тогда напряжение тоже будет выше 0,2V.



Ну это еще не все!!! После отпирания тиристор должен удерживаться в открытом состоянии. То есть лампочка должна продолжать гореть даже тогда когда с управляющего электрода убрали источник отпирающего напряжения.



Чтобы запереть тиристор нужно или убрать питание или подать на его управляющий вывод отрицательное напряжение.

Ну, и наконец, как быть если под рукою нет ни лампочки, ни источника питания а только лишь мультиметр? Тоже можно!

Как проверить тиристор мультиметром

Для проверки тиристора ставим мультиметр в режим "прозвонки" и подключаем щупы "плюс" на анод, "минус" на катод. Так как тиристор заперт, то на дисплее мультиметра будет высокое сопротивление.



Так как на щупах мультиметра имеется напряжение, то на управляющий электрод подаем "плюс"- кратковременно касаемся проводом от управляющего электрода на анод.
Тиристор должен открыться и на дисплее мультиметра появится низкое значение.


А вот дальше- самое интересное: если сейчас убрать провод с управляющего электрода то тиристор вновь запрется. Возникает вполне логичный вопрос: почему он не остался в открытом виде как на предыдущем примере с лампочкой?

все дело в том что для удержания в тиристора в открытом виде требуется определенный ток а на щупах мультиметра он недостаточный. Хотя, сразу оговорюсь: недостаточный он именно для тиристора КУ202: для слабеньких тиристоров типа КУ112 (применялись в импульсных источниках питания отечественных телевизоров) этого тока вполне достаточно и тиристор останется в открытом виде.

Ну и напоследок : основная часть информации и изображения любезно предоставлены сайтом Практическая электроника , и за это им огромная благодарность.

Тиристоры сейчас применяются во многих бытовых приборах. Схем с их участием существует множество.

Домашние мастера, собирая зарядное устройство или регулятор накала обычной лампочки, должны быть уверены: тиристор т253 или какой-либо другой исправен. Для этого эти полупроводники следует проверить.

Особенности работы

Данный вид полупроводников представляет собой диод, имеющий третий вывод, управляющий электрод, дополнительный. Их часто называют еще и тринистрами. Через этот электрод они управляются путем пропускания электрического тока.

Ток пропускается в одном направлении, а помечают его кольцевой полоской, которую наносят у катода.

Работоспособность любого тиристора проверяют и пропусканием нагрузки. Использовать для этого можно маленькую лампочку от обычного фонарика. Ее нить будет светиться от самого маленького тока.

Если ток проходит через тиристор, то есть он работоспособен, то лампочка загорается, если же нет, то остается темной.

Операция эта проводится следующим образом:

  • переключатель прибора ставят на проверку диодов;
  • проверяют переходы полупроводника катод-управляющий электрод, а также катод-анод. Имейте в виду – сопротивление первого должно находиться в пределах от 50 до 500 Ом;
  • учтите, что в каждом отдельном случае величина в измерениях должна быть одинаковой хотя бы примерно. Следует иметь в виду, что чем она выше, тем чувствительнее полупроводник.

Однако даже положительный результат такой проверки ничего не значит. Если тиристор ранее использовался в какой-то схеме, то переход между анодом и катодом может быть перегоревшим. Величина его в обоих измерениях очень большая, но мультиметром измерить ее невозможно.

Тиристор лучше проверять с помощью источников питания. Например, это можно сделать благодаря цепи тока переменного. Изготавливают несложную испытательную плату с лампочкой-индикатором, проводами и обычной кнопкой включения-выключения.

От трансформатора включают ток в 12 В. Смотрят: если при нажатии кнопки включения лампочка горит в полнакала, то все в порядке. Такой слабый свет легко объясняется тем, что через тиристор проходит полуволна переменного напряжения.

В принципе, проверка годности полупроводников – не такое уж и трудное занятие, для которого профессионалы и не требуется. Впрочем, и специальные приборы, как оказалось, тоже.

Как проверить рабочее состояние тиристора и симистора:


 


Читайте:



Skyrim — Сюжетный мод «Колеса Затишья

Skyrim — Сюжетный мод «Колеса Затишья

The Wheels of Lull — огромный, полностью озвученный сюжетный мод, который тесно переплетен с миром Скайрима . Игроку предстоит вступить в отряд...

Схема автомобильного генератора: принцип работы

Схема автомобильного генератора: принцип работы

Проверка обмотки возбуждения на межвитковое замыкание Межвитковое замыкание вызывает увеличение силы тока воз­буждения. Из-за перегрева обмотки...

Системы зажигания с индивидуальными катушками Устройство высоковольтной катушки зажигания

Системы зажигания с индивидуальными катушками Устройство высоковольтной катушки зажигания

Катушка зажигания – второй элемент в последовательности системы зажигания двигателя автомобиля. Работа катушки зажигания схожа с функциями...

Автомасла и все, что нужно знать о моторных маслах Что такое гидрокрекинговое моторное масло

Автомасла и все, что нужно знать о моторных маслах Что такое гидрокрекинговое моторное масло

Гидрокрекинг предназначен для получения малосернистых топливных дистил-лятов из различного сырья. Гидрокрекинг - процесс более позднего поколения,...

feed-image RSS