Главная - Тюнинг
Предварительный усилитель с темброблоком матюшкина. "Электроника и Радиотехника"Все для любителей! Схема предварительного усилителя матюшкина на импортных транзисторах

Высококачественный предварительный усилитель NATALY

Принципиальная схема, описание, печатная плата

Данный предварительный усилитель служит для тембровой коррекции и тонкомпенсации при регулировании громкости. Возможно использование для подключения наушников.

Для высококачественного тракта, имеющего в своём составе УМЗЧ с нелинейными и интермодуляционными искажениями порядка 0,001% становятся важны и остальные ступени, которые должны позволять полностью реализовать заложенный потенциал. В настоящее время известны много вариантов реализации высоких параметров, в том числе и на ОУ. Причиной разработки своего варианта предварительного усилителя стали следующие факторы:

При сборке предусилителя на ОУ порог его выходного напряжения, а следовательно - перегрузочная способность – целиком определяются напряжением питания ОУ, и в случае питания от +\-15В не может быть выше этого напряжения.
Результаты субъективных экспертиз предусилителей на ОУ в чистом виде (без выходных повторителей) и с таковыми, например, на основе параллельного усилителя – показывают предпочтение слушателей схеме ОУ+повторитель, при практически идентичных параметрах «с точки зрения Кг», это объясняется сужением спектра искажений ОУ при работе на высокоомную нагрузку и работе его выходного каскада без захода в режим АВ, дающий коммутационные искажения, практически ниже уровня чувствительности приборов (Кг ОУ ОРА134, например – 0,00008%), но хорошо заметных при прослушивании. Именно поэтому, а также по ряду других причин слушатели чётко выделяют предусилитель с выходным каскадом на транзисторах.
Известное схемное решение, содержащее интегральный повторитель на основе параллельного усилителя BUF634 довольно дорогостояще (цена буфера не менее 500 руб), хотя внутренняя схема буфера может быть легко реализована на дискрете – за гораздо более вменяемую сумму.
Усилители, в которых ОУ работает в малосигнальном режиме, показывают высокие характеристики, но по результатам прослушиваний проигрывают. Кроме того, они очень критичны к настройке и требуют как минимум, генератора меандра и широкополосного осциллографа. И всё это при явно худших субъективных результатах.

Недостаток выходного напряжения при схеме ПУ (ОУ + буфер) может быть устранён при реализации в буфере усиления по напряжению, а глубокая местная ООС устраняет искажения. Достаточно высокий начальный ток покоя в выходных транзисторах буфера гарантирует его работу без характерных для двухтактных структур в режиме АВ искажений. Наличие всего двукратного усиления напряжения позволяет добиться повышения перегрузочной способности на 6 дБ, а при трёхкратном – эта цифра становится равной 9 дБ. При работе буфера от источника питания +\-30В размах его выходного напряжения получается 58 вольт от пика до пика. Если же буфер запитать от +\-45В – то выходное напряжение от пика до пика может составить порядка 87В. Такой запас благоприятно отразится при прослушивании виниловых дисков, имеющих характерные особенности в виде щелчков от пыли.
Двухкаскадная реализация предварительного усилителя связана с тем, что темброблок вносит ослабление в сигнал до 10…12 дБ. Конечно, можно компенсировать это путём увеличения усиления второго каскада, но, как показывает практика, на темброблок лучше подавать как можно большее напряжение – это увеличивает отношение сигнал\шум. Кроме того, довольно часто встречаются диски, записанные с большим пик-фактором (громкие пики и довольно низкая средняя громкость). Это не недостаток сведения, скорее, наоборот, потому как звукорежиссёры зачастую злоупотребляют компрессором, пытаясь уместить в диапазон компакт-диска все ступени громкости звука. Но нельзя делать вид, что таких записей не существует. Слушатель при этом добавляет громкость. Таким образом, и второй каскад должен обладать не меньшей перегрузочной способностью, кроме того, он должен обладать малым собственным шумом, высоким входным сопротивлением и способностью без искажений пропускать реальный сигнал после темброблока, в котором крайние частоты звукового диапазона идут с наибольшим подъемом. Дополнительным требованием является линейная АЧХ при отключении темброблока, ровная ПХ при тестировании меандром и субъективная незаметность ПУ в тракте.

В качестве темброблока использован хорошо себя зарекомендовавший темброблок Матюшкина. Он имеет 4хступенчатую регулировку НЧ и плавную регулировку ВЧ, а его АЧХ хорошо соответствует слуховому восприятию, во всяком случае, классический мостовой ТБ, (который тоже может быть применён), слушателями оценивается ниже. Реле позволяет при необходимости отключить всякую частотную коррекцию в тракте, уровень выходного сигнала настраивается подстроечным резистором по равенству усиления на частоте 1000 Гц в режиме с ТБ и при обходе.
Регулятор баланса встроен в ООС второго каскада и особенностей не имеет.
Малое напряжение смещения у ОРА134 (в практике автора на выходе второго каскада не более 1 мВ) позволяет исключить переходные конденсаторы в тракте, оставив лишь один – на входе ПУ, потому как неизвестен уровень постоянного напряжения на выходе источника сигнала. И, хотя на выходе второго каскада на схеме указаны конденсаторы 4,7мкФ+2200 пФ – при уровне смещения нуля около милливольта и менее – их можно смело исключить, закоротив. Это положит конец спорам о влиянии конденсаторов в тракте на звук – наиболее радикальным методом.

Расчётные характеристики:

Кг в диапазоне частот от 20 Гц до 20 кГц - менее 0,001% (типовое значение порядка 0,0005%)
Номинальное входное напряжение, В 0,775
Перегрузочная способность в режиме обхода темброблока - не менее 20 дБ.
Минимальное сопротивление нагрузки, при котором гарантируется работа выходного каскада в режиме А - при максимальном размахе выходного напряжения "от пика до пика" 58В 1,5 кОм.

При использовании предварительного усилителя только с проигрывателями СД допустимо снижение напряжения питания буфера до +\-15В потому как диапазон выходного напряжения таких источников сигнала заведомо ограничен сверху, на параметрах это не отразится.
Налаживание предварительного усилителя следует начинать с проверки режимов по постоянному току выходных транзисторов буферов. По падению напряжения в цепях их эмиттеров устанавливают ток покоя – для первого каскада около 20 мА, для второго – 20..25 мА. При использовании небольших теплоотводов, которые при +\-30В становятся обязательными – можно, ориентируясь по ситуации с температурой - ток покоя увеличить еще немного.
Подбор тока покоя лучше всего выполнять резисторами в эмиттерах первых двух транзисторов буфера. При малом токе-увеличить сопротивления, при большом – уменьшить. Изменять нужно одинаково оба резистора.
При установленном токе покоя далее ставим регуляторы ТБ в положение, соответствующее максимально плоской АЧХ, и, подав на вход сигнал 1000 Гц с номинальным напряжением 0,775В – замеряем напряжение на выходе второго буфера. Затем включаем режим обхода и подстроечным резистором добиваемся той же амплитуды, что и с ТБ.
На завершающей стадии подключаем регулятор стереобаланса, проверяем на отсутствие разных форм неустойчивости (автор с такой проблемой не столкнулся) и проводим прослушивание. Настройка ТБ Матюшкина хорошо освещена в статье автора и здесь не рассматривается.
Для питания предусилителя рекомендуется стабилизированный источник питания, с независимыми обмотками для ПУ и релейной коммутации. Технически требования к питанию ничего нового не представляют. Основное – малый уровень СЧ и ВЧ шумов, с подавлением по питанию которых ситуация у ОУ известна. Про уровень пульсаций - он не должен превышать 0,5 – 1мВ.

Полный комплект плат состоит из двух каналов ПУ, РТ Матюшкина (одна плата на оба канала) и блока питания. Печатные платы разработаны Владимиром Лепёхиным.

Двухсторонняя печатная плата Предварительного усилителя:


УВЕЛИЧИТЬ

Печатная плата для ТБ Матюшкина с релейным переключением:


УВЕЛИЧИТЬ Схема стабильна.Пульсаций напряжения на выходе не заметно, измерения проводил на осциллографе в режиме 0,01дел./вольт(у моего это минимальный предел).


УВЕЛИЧИТЬ

Результаты измерений:

На ОРА134 (только первое звено из двух), питание - одноступенчатое, +\-15В:

Кни(1 кГц).......................... -98дБ (около 0.0003%)
Ким(50Гц+7кГц).................менее -98дБ (около 0,0003%)

На ОРА132 (оба звена), полная версия, питание двухступенчатое:

Кни (1кГц).......................... -100дБ (около 0,00025%)
Ким (19кГц+20кГц)................... -96дБ (около 0,0003%)

В случае самовозбуждения каскадов на ВЧ следует параллельно резисторам R28, R88 и комплементарным им в другом канале запаять слюдяные корректирующие конденсаторы ёмкостью от 100 до 470пФ. Такое было обнаружено при использовании транзисторов ВС546\ВС556 + 2SA1837\2SC4793.

Во вложениях можно скачать все файлы схем и печатных плат в форматах SPlan 6.0 и SL 5.0 соответственно,

На фото: предусилитель «Натали» в корпусе спутникового ресивера


В статье речь пойдет о моём варианте сборки предварительного усилителя «Натали» с удачным решением проблемы корпуса.

Этот проект стал очередным долгостроем в моем списке и побил все сроки по выполнению. Дело в том, что мысль о сборке предусилителя появилась больше года назад, а вместе с мыслью в моем ящичке для деталей поселились почти все необходимые для этой схемы компоненты.

И, как это часто бывает, весь энтузиазм внезапно куда-то испарился, так что пришлось свернуть все начатое на неопределенное время. Хотя почему неопределенное… очень даже определенное – до наступления осенних холодов, когда все летние дела, которых было очень много в этом году, будут завершены и появится свободное время для паяния.

О схеме и деталях


Схему выбирал долго, очень долго! Путь к этому предварительному усилителю начинался с использования в качестве ПУ с регулятором тембра специализированных микросхем вроде LM1036 или TDA1524, но меня от этого греха благополучно отговорили местные форумчане. Далее была схема, взятая с какого-то иностранно сайта на трех ОУ типа TL072 с регулировкой ВЧ и НЧ. Даже вытравил ПП и собрал, и слушал некоторое время этот пред, но не легла душа к нему.

Потом обратил внимание на схему знаменитого предусилителя Солнцева, и уже во время поиска информации по ПУ Солнцева наткнулся на схему, напоминающую солнцевскую в связке с пассивным РТ Матюшкина. Это была . Это было как раз то, что мне надо!

Немного упростив схему предусилителя и, доработав ее под себя, получил вот такой результат. Переход на одноэтажное питание и удаление «лишних» деталей позволило несколько упростить разводку платы, сделать ее односторонней и главное немного уменьшить размеры ПП. В схеме ничего существенного не менял, что могло бы ухудшить качество звука, только убрал ненужные мне функции обхода регулятора тембра, баланса и блок тонкомпенсации.

В схему регулятора тембра ничего своего не вносил, но все равно понадобилось разводить плату заново, т.к. не нашел в интернете готовую одностороннюю печатку нужного мне размера. Коммутация режимов темброблока сделана на отечественных реле РЭС-47.

Для того, чтобы сделать нужное мне управление регулятором тембра и предусилителем на несколько дней погрузился в теорию принципов работы счетчиков и триггеров отечественных микросхем. Для предусилителя выбрал корпус от спутникового ресивера, отжившего свое, в котором имелось довольно большое окошко, и его нужно было заполнить чем-то красивым и полезным. Так вот, захотелось мне сделать так, чтобы была визуальная информация о режимах регулятора тембра, и лучше, если это будут не светодиоды, а привычные глазу и мозгу цифры. В результате нарисовалась такая схема из трех МС.

К561ЛЕ5 задает импульсы, которые поступают на входы К174ИЕ4 и К561ИЕ9А. Счетчик на ИЕ9 управляет 4-мя ключами, переключающими реле на РТ Матюшкина. Одновременно с этим счетчик на ИЕ4 меняет показания на семисегментном индикаторе АЛС335Б1, указывая, в каком режиме находится регулятор тембра в данный момент. Цифра «0» соответствует режиму с минимальным уровнем низких частот, цифра «3» – максимальным. Еще один простой электронный переключатель выполнен на МС К155ТМ2. Одна половина микросхемы управляет релюшкой, переключающей режимы индикатора уровня сигнала, вторая половина отвечает за реле селектора входов. Ну, и типовая схема индикатора уровня сигнала на МС LM3915 отдельно для каждого канала.

Блок питания сделан на базе трансформатора ТП-30, разумеется с перемотанной под нужные напряжения вторичной обмоткой.

Все напряжения стабилизированные:
+/- 15В - на / LM337 для питания платы предусилителя
+9В на 7805 для питания реле и блока управления
+5В опять же на для питания USB звуковой карты

О настройке и возможных проблемах

Несмотря на всю кажущуюся сложность схемы и множество деталей, при правильной сборке и применении заведомо исправных и рекомендованных для этой схемы компонентов, можно с большой долей вероятности отгородить себя от неприятных сюрпризов, которые могут возникнуть при сборке данного ПУ. Единственная часть всей этой схемы, которая нуждается в настройке – это собственно сама плата предусилителя. Нужно установить ток покоя, проверить уровень постоянки не выходе, и форму сигнала.

Рекомендованный ток покоя для этого ПУ 20-22 мА, и рассчитывается он по падению напряжения на 15-ти омных резисторах R20, R21, R40, R42. Для тока 20-22 мА на этих резисторах должно падать 300-350 мВ (300:15=20, 350:15=22). Падение напряжения, а соответственно и ток можно регулировать в ту или иную сторону изменением номинала резисторов R9, R10, R30, R31 (в оригинале схемы 51 Ом). Большему току покоя соответствует большее сопротивление резистора и наоборот. В своем варианте, вместо постоянных резисторов 51 Ом, я впаял многооборотные подстроечные номиналом 100 Ом, что позволило без лишних усилий и с высокой точностью выставлять нужный ток покоя.

Две неприятности , с которыми может столкнуться человек, решивший повторить данный предусилитель - это возбуд, и постоянка на выходе. Причем, как правило, первая проблема порождает вторую. Сначала нужно убедиться в наличии или отсутствии постоянной составляющей на выходе каждого буфера и каждого ОУ. Допускается небольшое количество постоянки, но именно небольшое, грубо говоря не более нескольких мВ.

Если постоянки нет, я вас поздравляю! Если есть – ищем в чем причина, а причин не так уж и много. Это либо ошибка в монтаже, либо «не та» деталь, либо где-то есть возбуд. Первым делом нужно внимательно осмотреть плату на предмет непропая или наоборот – слипшихся дорожек, перепроверить все ли детали нужного номинала вы используете, и если все правильно остается третий вариант, т.е. возбуд. Для его поиска вам понадобится осциллограф.

Сам я столкнулся с этой проблемой. Во всех четырех буферах была постоянка на выходе в размере 100-150 мВ. И причиной ее возникновения оказалась как раз-таки «не та» деталь. Дело в том, что вместо операционных усилителей OPA134 у меня были установлены NE5534, которые не совсем подходят для применения в этой схеме. Долго и безуспешно я боролся с этой проблемой, а проблема исчезла сама собой после замены ОУ на OPA134.

О расположении и соединении


Из-за того, что имеющийся корпус был не очень большого размера, пришлось рисовать все платы заново, чтобы хоть на пару сантиметров сделать их компактнее. Размещение плат в корпусе получилось очень плотным, но к счастью все вместилось. Все – это плата предусилителя, регулятора тембра, сдвоенная плата блока управления и индикации, USB звуковая карта, трансформатор блока питания и плата выпрямителей-стабилизаторов, и две маленькие платы селектора входов и регулятора громкости и ВЧ.


Все общие провода соединил в одной точке, на плате регулятора громкости и высоких частот. Это избавило от пугающей меня проблемы гула и фона, которые возможны при неправильно разведенной земле.


Опять же из-за стесненных условий, плату управления и индикации пришлось сделать составной, состоящей из одной большой и одной маленькой платы. Соединяются они между собой через штырьковый разъем.


Все платы крепил к шасси корпуса через вот такие пластиковые изолирующие проставки. Это позволило полностью изолировать платы от контакта, как с металлическим корпусом, так и друг от друга, в местах, где этого не нужно.

Удобный корпус

Расскажу немного и о самом корпусе. Как я уже упоминал – в качестве корпуса для предусилителя используется корпус от спутникового ресивера. Старичок верой и правдой служил много лет, несколько раз ремонтировался и после очередной поездки в мастерскую был переправлен мне с диагнозом «труп».

Хорошие были раньше корпуса, большие! Именно по причине своих размеров и большого окна я и выбрал этот корпус. На лицевой панели кроме надписей не оказалось ничего лишнего. Остались, конечно 3 незадействованный кнопки, но это не страшно. Закрасил надписи матовой краской из балончика, купленного в автомагазине. Краска процентов на 98 совпала по цвету с той, которой был покрашен корпус изначально. Разницу можно заметить, только если очень присмотреться.


В качестве ручек для этих регуляторов установил , которые кстати . Они отлично (на мой взгляд) вписались в общий дизайн предусилителя, который выдержан в серебристо-черном цвете.

О звуке и впечатлениях

И настало время рассказать о самом интересном, о том что же получилось в итоге. А в итоге получилась еще одна хорошая игрушка в моей коллекции звуковоспроизводящей аппаратуры.

Схема несомненно заслуживает внимания и того, чтобы ее повторяли. Звучание готового устройства понравилось, оно вносит какой-то свой окрас в музыку. Несмотря на всего лишь 4 ступени в регуляторе тембра Матюшкина, не могу сказать, что регулировок низких частот не хватает. Четырех позиций регулятора НЧ вполне достаточно для того, чтобы подобрать нужный уровень низких частот для конкретного стиля музыки и своих предпочтений.
Любите взрывной бас? Переключаем темброблок в четвертое положение и пусть колонки рвутся! Диапазона регулировок по высоким тоже хватает с избытком при положении ручки максимально вправо, количество высоких начинает резать слух.

Отдаваемое в последнее время предпочтение ламповым выходным усилителям мощности звуковой частоты для звуковоспроизведения высокой верности трудно понять, исходя из объективного их сравнения c транзисторными УМЗЧ. Ведь по всем измеряемым характеристикам современный УМЗЧ на транзисторах существенно превосходит ламповый. На наш взгляд, измеряемыми обычно нелинейными искажениями (НИ) не исчерпываются те искажения, которые определяют качество звуковоспроизведения. B самых совершенных конструкциях транзисторных УМЗЧ уровень НИ доведен практически до слухового порога и доже ниже, поэтому сомнительно, что их можно воспринимать на слух, тем более в условиях маскировки полезным сигналом. Дело, по-видимому, в том, что обычно измеряют НИ в установившемся режиме, когда переходный процесс после подачи на вход испытываемого усилителя измерительного сигнала уже завершен и на входе, и на выходе усилителя, a в замкнутой петле общей отрицательной обратной связи (ООС) установился стационарный колебательный процесс, отвечающий c большей или меньшей точностью поступающему но вход сигналу.

Очевидно, что нелинейность усилителя проявляется гораздо сильнее во время переходного процесса (длительность которого за счет задержки сигнала в цепи ООС может быть значительной), особенно на его начальном этапе, когда действие ООС наименее эффективно (из-за упомянутой задержки). B отличие от динамических искажений, приводящих к перегрузке входного каскада на протяжении всей длительности неблагоприятного по параметрам входного сигнала - рассматриваемые переходные НИ имеются даже тогда, когда отсутствуют динамические, но только пока переходный процесс не закончен. A если учесть, что реальные звуковые программы очень далеки от стационарности и на самом деле вызывают в УМЗЧ почти непрерывный переходный процесс, то при воспроизведении таких программ HИ могут намного превышать измеренные обычными методами в одном и том же экземпляре усилителя.

Вследствие малой длительности переходного процесса по сравнению c временем лабораторных измерений, они пока «ускользают» от экспериментального изучения (для этого требуется разработка специальных методов) и в то же время легко воспринимаются на слух на протяжении звучания всей фонограммы. C этой точки зрения становится понятным преимущество ламповых усилителей: хотя измеряемый уровень НИ y них больше (это относится только к стационарному режиму), в реальных условиях лампы, как гораздо более линейные приборы, обеспечивают меньшие HИ (хотя, конечно, большие, чем те же лампы в стационарном режиме), чем транзисторы, что и обусловливает лучшее звучание ламповых усилителей.

Однако очевидны такие недостатки ламповых усилителей, кок неудобство в эксплуатации, громоздкость и большая масса, значительная потребляемая мощность при сравнительно низких КПД и выходной мощности. B этой связи выглядело бы заманчивым создание транзисторного усилителя c реальным уровнем НИ не хуже, чем y лампового. Последнее означает, что измеряемый по обычным методикам уровень НИ такого усилителя должен быть снижен но один-два порядка (!) по сравнению c лучшими образцами (желательно же – кок можно больше), чтобы НИ в нестационарном режиме имели приемлемую величину.

Однако применяемые сейчас методы линеаризации транзисторных усилителей, по-видимому, себя уже исчерпали и не позволят достичь требуемого коэффициента НИ ( Q ≈0,0001…0,00001 %). Поэтому была поставлена задача изучить возможность получения такого рекордно низкого уровня собственных НИ транзисторного УМЗЧ, не останавливаясь перед сложностью схемотехнических решений, а затем и решить, оправдан ли такой подход, приносит ли он выигрыш по качеству звучания по сравнению c существующими схемами.

Представляемая в настоящей роботе конструкция адресована в первую очередь самым взыскательным ценителям высококачественного звуковоспроизведения. Она разработана на основе изложенного в принципа, который является усовершенствованием известного метода снижения искажений, описанного в .

На рис.1 изображена блок-схема двухкаскадного усилителя c передаточной функцией первого каскада К1 и второго К2, передаточной функцией β цепи общей ООС, охватывающей весь усилитель, и передаточной функцией γ цепи местной положительной обратной связи (МПОС), охватывающей первый каскад. Результирующая передаточная функция такого устройство описывается выражением:

К = К 1 К 2 /(1- γ К 1 +К 1 К 2 β)

Если установить усиление в петле МПОС γ К 1 =1, то окажется, что в отличие от усилителя с одной ООС, у которого К = К 1 К 2 /(1- γ К 1 +К 1 К 2 β)и только приближенно К≈1/β (при К 1 К 2 β>>1), передаточная функция данного усилителя будет точно равно 1/β. При этом глубина ООС должна быть больше глубины МПОС, т.е. К 1 К 2 > γ К 1 , что является необходимым (но недостаточным) условием устойчивости. Таким образом, при γ К 1 =1 подавляются все искажения, которые возникают во втором каскаде и причиной которых является непостоянство его передаточной функции (поскольку К=1/β и не зависит от К 2).

Однако абсолютно полное подавление искажений возможно только при идеальном первом каскаде. Реально же ему присущи кок нелинейные, таки частотные искажения, приводящие к отклонению передаточной функции К 1 от оптимального значения. Кроме того, она изменяется из-за колебаний питающих напряжений, температурного дрейфа и изменения со временем параметров деталей. Проблемой является и обеспечение совместной устойчивости такой сложной системы при совместном действии ООС и ПОС (второе условие устойчивости), так как введение ПОС уменьшает запас устойчивости исходной системы . С другой стороны, желательно (для получения наибольшей линейности), чтобы глубина как ПОС, так и ООС была постоянной в рабочем диапазоне частот, т.е. чтобы первый полюс АЧХ системы с разомкнутыми обратными связями находился но частоте f>20-30 кГц, и частота среза в петле ПОС была также не меньше. Между тем выполнить последние требования и одновременно обеспечить надежный запас устойчивости вовсе не просто, a отступление от них значительно снижает эффективность метода. Видимо, поэтому автору неизвестны примеры использования описанного принципа подавления искажений для целей высококачественного звуковоспроизведения.

Принципиальным недостатком устройства показанного на рис.1 является, как показывает анализ, то, что петля МПОС включена последовательно в цепь ООС. Значительно улучшить работу устройства можно путем параллельного подключения петли МПОС к петле ООС, т.е. подключив вход второго каскада не к выходу первого каскада (точка 2, рис.1), а к его входу (точка 1). Блок-схема устройства, предложенного в , показана на рис.2. Важнейшим преимуществом такого устройства является меньший фазовый сдвиг, вносимый в петлю ООС элементами схемы МПОС (от входа устройство до входа второго каскада). Это понятно из сравнения рис.2 с рис.1, так как очевидно, что фаза сигнала в точке 2 отстает от фазы в точке 1 (рис. 1) но фазовый сдвиг, вносимый первым каскадом (и этот сдвиг может быть весьма существенным на частотах 0,2-1 МГц и выше, в области которых должно обеспечиваться устойчивость устройства).

Данное преимущество является решающим для применения этого метода компенсации искажений в высококачественных УМЗЧ, так кок вносимые при его использовании минимальные фазовые сдвиги позволяют получить достаточный запас устойчивости и тем самым обеспечить надежную роботу усилителя c МПОС.

Достоинством устройства, показанного на рис.2 является также возможность более независимого (хотя независимость эта относительная, поскольку петли, по-прежнему взаимодействуют между собой) и оптимального выбора параметров петель МПОС и ООС в соответствии с их функциональным назначением, которое существенно различно. Эта большая независимость видна из выражения для передаточной функции усовершенствованной системы:

К = К 2 /(1- γ К 1 +К 2 β)

которое, в отличие от , не содержит смешанных произведений передаточных функций элементов, относящихся к различным петлям. Такое разделение невозможно в устройстве, показанном на рис. 1, где первый каскад является общей частью петель МПОС и ООС, вследствие чего его параметры определяют одновременно и свойство ООС, и свойство ПОС, из-за чего требования к этим параметрам во многом противоречивы, что также затрудняет решение задачи максимального подавления искажений.

Преимущества параллельного подключения петли МПОС к петле ООС позволяют практически реализовать устройство даже не c одной, а с двумя МПОС, взаимно усиливающими действие друг друга и тем самым улучшающими компенсацию искажений. Блок-схема такого устройства показан но рис.3, где К 1 , К 2 , К З – передаточные функции трех каскадов основного канала усилителя; β – передаточная функция цепи ООС; α 1 γ 1 и α 2 γ 2 - передаточные функции первой и второй петли МПОС соответственно, причем равенство α 1 γ 1 =1 и α 2 γ 2 =1 устанавливаются c возможно большей точностью. Из его передаточной функции:

K = К 1 К 2 К 3 /[(1-α 1 γ 1 )(1-α 2 γ 2 )+К 1 К 2 К 3 ],

следует, что поскольку 1-α 1 γ 1 <<1 , то степень подавления искажений, зависящая от выражения (1-α 1 γ 1 )(1-α 2 γ 2 ), значительно больше, чем в устройстве c одной петлей МПОС, в котором эта степень определяется одним членом 1-α 1 γ 1 >>(1-α 1 γ 1 )(1-α 2 γ 2 ). Однако самым замечательным является то, что при одной МПОС минимально достижимый уровень НИ нельзя сделать меньше искажений, вносимых элементами самой петли МПОС, a в устройстве c двумя (или более) петлями МПОС, как показывает расчет, собственные НИ каждой петли МПОС подавляются действием другой, т.е. возможно снизить НИ ниже уровня, определяемого самым линейным блоком устройства, каким должен быть контур МПОС. Это является существенным преимуществом данного метода компенсации искажений перед другими, позволяющими снижать искажения лишь до предела, определяемого собственной нелинейностью схемы компенсации.

Заметим, что все сказанное выше полностью относится к тем искажениям, которые обусловлены непостоянством передаточных функций (кроме нелинейных, это например, амплитудно-частотные). Такие искажения компенсируются в любых частях устройства, кроме цепи ООС β.

Принципиальная схема УМЗЧ, соответствующая рис.3, изображена на рис.4. Для получения как можно более низкого уровня НИ основной канал усилителя (без МПОС) задуман кок достаточно линейный УМЗЧ. для этого все каскады усилителя выполнены двyxтактными на комплемeнтарных парах транзисторов, что позволило сделать оба плеча симметричными относительно общего провода и получить более линейную амплитудную характеристику. Все транзисторы работают в режиме A, за исключением выходного каскада с плавающим смещением на входе (cyпер-А), которое задается схемой на элементах VT15-VT18, R38-R41, VD15, VD16. Это обеспечивает невыключающийся режим роботы оконечных транзисторов при их малом токе покоя.

Входной каскад выполнен по каскадной схеме ( V Т1, VT3, VT2, VT4). Режим работы его транзисторов выбран так, что они не входят в режим отсечки или ограничения тока при действии на входе сигналов с амплитудой, в несколько раз превышающей номинальное входное напряжение даже при отключенной ООС. Этим он выгодно отличается от традиционного дифференциального каскада. Цепочка R19R18 C7 c частотой среза ≈ 90 кГц ограничивает усиление самых высокочастотных составляющих импульсных сигналов, предотвращая перегрузку и последующих каскадов усилителя. Благодаря этим мерам, а также высокому быстродействию за счет отказа от применения в каскадах транзисторов с общим эмиттером и коррекции по опережению (конденсаторы С5, С6), динамические искажения в усилителе отсутствуют, что особенно важно для устойчивой роботы системы с ПОС.

Напряжение ООС с выхода усилителя подается в точку соединения резисторов R11 и R12, которые вместе с R10 и R13 опpeделяют рабочий ток VT 1 и VТ2. Одновременно R10 и R 13 в составе делителей R14/R10C3 и R15/R13C4 задают передаточную функцию цепи ООС. Постоянная составляющая выходного напряжения поступает но эмиттеры входных транзисторов через R10R11 и R12R13, а не только через R14 и R15, поэтому глубина ООС по постоянному напряжению намного больше, чем по переменному, и осуществляется жесткая стабилизация постоянной составляющей напряжения но выходе УМЗЧ. Использование электролитических конденсаторов C3, C4 не приводит, как следует из измерений, к существенному увеличению искажений, так как они поляризованы постоянным напряжением около 4 В (переменная составляющая намного меньше), так что режим их роботы практически линеен.

Второй каскад на транзисторах VT5- V Т8, включенных по схеме ОК-ОБ, является буферным между двумя контурами МПОС. Диоды VD3-VD6 задают напряжение смещения на базах эмиттерных повторителей VT9, VТ10, а диоды VD7, VD8 защищают от слишком сильного его увеличения при неисправностях в усилителе или перегорании одного из предохранителей. Усилитель напряжения (VT11, VТ13 VT12, VT14) также выполнен по каскадной схеме. Напряжение питания первых каскадов около 21 B и задается стабилизатором ( V Т23, VT 24, VD17, VD18). Выходные транзисторы работают с малым током покоя, поэтому термостабилизации их не требуется.

Элементы частотной коррекции R19R18C7, R27C10, R22C8, R23C9 формируют АЧХ усилителя, обеспечивая его устойчивость при действии ООС. Одновременно R19 и R27 служат нагрузкой входного и буферного каскадов соответственно, а также нагрузкой петель МПОС, определяя их коэффициент усиления. B контурах МПОС использованы полевые транзисторы для минимизации собственных искажений контуров. Каждый контур МПОС – усилительный каскад с коэффициентом передачи около единицы, изменять который можно подстроечными резисторами R58 и R67. Непосредственным соединением выхода каскада с его входом осуществляется 100%-ная ПОС. Цепочки R57C15 и R66C16 корректируют АЧХ каскадов, улучшая точность компенсации на частотах звукового диапазона. Контуры МПОС подключают к основному каналу в узловых точках А, B и к общему проводу.

Рабочие точки транзисторов первых каскадов и контуров МПОС жестко стабилизированы высокоомными резисторами в их эмиттерных (истоковых) цепях. Этим достигается постоянство характеристик каскадов, подключенных к точкам А и B. Кроме того, транзисторы VTЗVT4 и VT27VT28, VT7VT8 и VT31VT32 -динамическая нагрузка друг для друга, a эмиттерные повторители VT5VT6, VT9VT10 и полевые транзисторы VТ25VT26 и VT29VТ30 обладают высоким входным сопротивлением, поэтому сопротивление нагрузки для петель МПОС определяется резисторами R19, R27 (на звуковых частотах). Благодаря этому удалось добиться высокой стабильности усиления в петлях МПОС, которое не зависит от температуры и не изменяется с течением времени.

Печатная плота разработана с учетом обычных требований. Блоки МПОС на транзисторах VT25-VT32 выполнены на двух отдельных небольших платах и в виде модулей и закреплены перпендикулярно плате основного усилителя вблизи узловых точек A и B.

B усилителе использованы резисторы типа МЛТ, подстроечные резисторы типа СПЗ-29М, конденсаторы К50-16 (С3, С4, С11-С14), К73-17 (С1, С2), КД1, КТ1 – остальные. Теплоотводы транзисторов VT21, V Т22 расположены вблизи элементов схемы плавающего смещения оконечного каскада для компенсации темперотурной не-стабильности тока покоя выходных транзи-cторов.

Налаживание

К выходу усилителя подключают эквивалент нагрузки сопротивлением 4-8 Ом и проверяют работу схемы плавающего смещения оконечной ступени. Для этого подключают осциллограф к базам VT 19 и VT20 и на вход усилителя подают синусоидальный сигнал с частотой 100 Гц. Осциллограмма должна иметь вид пульсирующего напряжения (типа «выпрямленной» синусоиды) c амплитудой около 5 B при номинальном выходном напряжении и сопротивлении нагрузки 4 Ом. При увеличении сопротивления нагрузки или уменьшении входного сигнала эта амплитуда должна уменьшаться.

Проверяют прохождение через усилитель прямоугольных импульсов. Выбросы на осциллограммах выходного напряжения должны отсутствовать, в противном случае увеличивают емкость конденсаторов С5 и С6. На этом настройку основного канала можно считать законченной. Отметим, что уже базовый усилитель (без контуров МПОС) обладает достаточно высокими характеристиками.

Технические характеристики:

Номинальное входное напряжение: 0,3 B

Номинальная выходная мощность но нагрузке 4 Ом: 80 Вт

Номинальная выходная мощность но нагрузке 8 Ом: 40 Вт

Частотный диапазон при завалах на краях не более 0,5 дБ: 15 – 100000 Гц

Входное сопротивление: 50 кОм

Выходное сопротивление: 0 Ом (с контурами МПОС)

Коэффициент интермодуляционных искажений, не более: 0,005 %

Уровень шума (взвешенный): -105 дБ (с контурами МПОС)

Настраивают контуры МПОС, подключив их к схеме и установив движки R58, R67 в положение максимального сопротивления, т.е. минимального петлевого усиления контуров МПОС. Напряжение между стоком и истоком, полевых транзисторов должно быть не более 10 B (максимально допустимое для транзистора КП103), но и не слишком малым, в противном случае добиваются нужного значения подбором резисторов R51, R52, R60, R61. Желательно, чтобы комплементарные транзисторы были подобраны в пары с близкими значениями начального тока стока и напряжения отсечки.

Вход усилителя закорачивают, к выходу подключают акустическую систему (АС) или измерительный прибор, а сигнал от источника (генератора сигналов или источника музыкальной программы, боготой низко и высокочастотными составляющими) c высокоомным выходом подают в узловую точку B, имитируя сигнал искажений. Общий провод источника соединяют с общим проводом усилителя. Регулировкой R58 добиваются максимального ослабления сигнала на выходе усилителя. Подбором R57C15 улучшают подавление высокочастотных составляющих спектра сигнала.

Настроив первый контур МПОС, отключают его от точки А, а источник-имитатор искажений – от точки B. Выход имитатора подключают параллельно резистору R35 и настраивают второй контур МПОС аналогично первому. После этого вновь подключают первый контур МПОС и наблюдают дополнительное подавление сигнала.

На завершающем этапе проводят прямую проверку подавления НИ в усилителе. Достаточно измерить лишь коэффициент интермодуляционных искажений Qи так как при достаточно малых его значениях коэффициент гармонических искажений заведомо приемлем. B соответствии с методикой на вход усилителя подают два синусоидальных сигнала с частотой 25 – 30 кГц и paзнocтью частот ≈1 кГц при одинаковой амплитуде, не превышающей половины номинальной, и оценивают уровень звука, воспроизводимого АС. При отключенных контурах МПОС можно расслышать очень тихий звук (соответствующий Q и = 0,005 %), который при их подключении полностью исчезает.

Для наглядной демонстрации подавления НИ можно временно увеличить нелинейность базового усилителя путем подключения цепочки из последовательно соединенных диода в проводящем направлении (например, Д9) и резистора сопротивлением 47 кОм параллельно резистору R9. При этом Qи базового усилителя возрастает примерно до 0,5 %, комбинационная частота становится отчетливо различимой, и можно более уверенно судить о ее подавлении при подключении контуров МПОС.

Из таких измерений следует, что каждый из контуров МПОС подавляет искажения не менее чем но 30 дБ, а оба они вместе – почти но 60 дБ, так что НИ всего усилителя измерить обычными методами невозможно из-за их крайне малой величины, а можно только оценить с учетом Qи базового усилителя, уменьшенного на три порядка, что дает фантастическую величину ( Q и ≈ 0,00001 %).

Следует отметить еще одну положительную сторону применения МПОС в усилителе. Так как при прекращении действия общей ООС коэффициент усиления из-за действия ПОС стремится возрастать, то при задержках сигнала в цепи ООС контуры МПОС становятся фактически форсирующими корректирующими устройствами, которые ускоряют процессы в системе и уменьшают фазовый сдвиг между входным и выходным сигналами . Благодаря этому улучшается качество переходного процесса, что также способствует уменьшению искажений.

Субъективное впечатление от работы данного усилителя трудно передать словами, нужно слышать чистоту и прозрачность его звучания. B этом отношении он не только не уступает ламповым усилителям, но и заметно превосходит их, не внося в звуковую картину практически ничего «от себя». Опыт его эксплуатации в течение 5 лет показал надежность конструкции, а периодические проверки – хорошую стабильность настройки и сохранение точности компенсации искажений в заданных пределах без дополнительных регулировок.

Печатные платы выполнены из фольгированного текстолита. Размер платы основного канала (рис.5) 150 x 105 мм, модулей МПОС (рис.6) 105 х 30 мм. После распайки всех деталей модули МПОС устанавливают на основную плату вдоль направлений, указанных стрелками на рис.1. Соответствующие печатные проводники плат соединяются согласно принципиальной схемы с помощью проволочных перемычек. Шины общего провода можно соединить с помощью проволочных растяжек, удерживающих платы во взаимно перпендикулярном положении.

Отключение и подключение контуров МПОС при настройке производится перемычками между узловыми точками A, Б и соответствующими точками модулей МПОС.

Для стерео усилителя платы основного канала и модулей МПОС имеют вдвое большую ширину – не 105, а 210 мм, и на них нанесены по два одинаковых рисунка.

Компоновке усилителя следует уделить особое внимание. Провода, соединяющие усилитель с блоком питания, должны быть максимально короткими и большого сечения. Особенно это касается провода, соединяющего шину общего провода печатной платы с «нулем» блока питания - точкой соединения конденсаторов фильтра. Если по каким-то причинам последнее требование невыполнимо, то «земляные» выводы конденсаторов С13, С14 лучше не соединять с общим проводом на плате, а, закоротив между собой, соединить с «нулем» блока питания отдельным проводом. K этому же месту подключаются и провода от акустических систем, как показано на рис.7.

Основной недостаток активных регуляторов тембра состоит в использовании глубокой частотно-зависимой ООС и больших дополнительных искажениях, вносимых этими регуляторами в обрабатываемый сигнал.
Поэтому в высококачественной аппаратуре часто применяют пассивные регуляторы. Правда, и они не лишены недостатков. Самый крупный из них - затухание сигнала, соответствующее диапазону регулирования. Но так как глубина регулирования тембра в современной звуковоспроизводящей аппаратуре не более 8...10 дБ, то в большинстве случаев вводить в тракт сигнала дополнительные каскады усиления не требуется.
Другой, несущественный недостаток таких регуляторов - необходимость применения переменных резисторов с экспоненциальной зависимостью сопротивления от угла поворота движка (группа "В"), обеспечивающих плавное регулирование.
Однако простота конструкции и высокие качественные показатели все же склоняют конструкторов к применению именно пассивных регуляторов тембра.
Следует отметить, что эти регуляторы требуют низкого выходного сопротивления предшествующего им каскада и высокого входного сопротивления последующего.
Регулятор тембра разработанный английским инженером Баксандалом еще в 1952 г. стал, пожалуй, самым распространенным частотным корректором в электроакустике. Классический его вариант состоит из образующих мост двух звеньев фильтра первого порядка - низкочастотного R1C1R3C2R2 и высокочастотного C3R5C4R6R7 (рис. 1,а). Аппроксимированные логарифмические амплитудно-частотные характеристики (ЛАЧХ) регулятора показаны на рис. 1б. Там же приведены расчетные зависимости для определения постоянных времени точек перегиба ЛАЧХ.


Теоретически максимально достижимая крутизна АЧХ для звеньев первого порядка составляет 6 дБ на октаву, но при практически реализуемых характеристиках из-за незначительного различия частот перегиба (не более декады) и влияния предшествующих и последующих каскадов она не превышает 4...5 дБ на октаву. При регулировании тембра фильтр Баксандала меняет только наклон АЧХ без изменения частот перегиба. Вносимое регулятором на средних частотах затухание определяется соотношением n=R1/R3. Диапазон регулирования АЧХ при этом зависит не только от величины затухания п, но и от выбора частот перегиба частотной характеристики, поэтому для его увеличения частоты перегиба устанавливают в области средних частот, что, в свою очередь, чревато взаимным влиянием регулировок.

В традиционном варианте рассматриваемого регулятора R1/R3=C2/C1= =C4/C3=R5/R6=n, R2=R7=n-R1. При этом достигается приблизительное совпадение частот перегиба АЧХ в области ее подъема и спада (в общем случае они различны), что обеспечивает относительно симметричное регулирование АЧХ (спад даже в этом случае неизбежно получается более крутым и протяженным). При обычно используемом п=10 (для этого случая указаны минимальные значения номиналов элементов на рис. 1,а-3,а) и выборе частот раздела вблизи 1 кГц регулирование тембра на частотах 100 Гц и 10 кГц относительно частоты 1 кГц составляет ±14...18дБ. Как отмечалось выше, для достижения плавного регулирования переменные резисторы R2, R7 должны иметь экспоненциальную характеристику регулирования (группа "В") и, кроме того, для получения линейной АЧХ в среднем положении движков регуляторов соотношение сопротивлений верхнего и нижнего (по схеме) участков переменных резисторов также должно быть равно п. При "хайэндовском" п=2...3, что соответствует диапазону регулирования ±4...8 дБ, вполне допустимо использовать переменные резисторы с линейной зависимостью сопротивления от угла поворота движка (группа "А"), но при этом несколько огрубляется регулировка в области спада АЧХ и растягивается в области подъема, а плоская АЧХ получается отнюдь не в среднем положении движков регуляторов. С другой стороны, сопротивление секций сдвоенных переменных резисторов с линейной зависимостью лучше согласовано, что уменьшает рассогласование АЧХ каналов стереофонического усилителя, так что неравномерное регулирование в этом случае можно считать допустимым.

Наличие резистора R4 не принципиально, его назначение - снизить взаимное влияние звеньев и сблизить частоты перегиба АЧХ в области высших звуковых частот. Как правило, R4= =(0,3...1,2)"R1. Как показано ниже, от него в ряде случаев можно вообще отказаться. Для снижения влияния на регулятор предшествующих и последующих каскадов их выходное Rвых и входное Rвх сопротивления должны быть соответственно Rвых<>R2.

Приведенный "базовый" вариант регулятора применяется обычно в радиоаппаратуре высокого класса.

В бытовой аппаратуре используют несколько упрощенный вариант (рис. 2,а). Аппроксимированные логарифмические амплитудно-частотные характеристики (ЛАЧХ) такого регулятора приведены на рис. 2,6. Упрощение его высокочастотного звена привело к некоторой расплывчатости регулирования в области высших частот и к более заметному влиянию предшествующего и последующего каскадов на АЧХ в этой области.


Puc.2


Подобный корректор при п=2 (с переменными резисторами группы "А") был особенно популярен в простых любительских усилителях конца 60-х - начала 70-х годов (главным образом, из-за малого затухания), но вскоре величина п возросла до привычных сегодня значении. Все сказанное выше относительно диапазона регулирования, согласования и выбора регуляторов справедливо и для упрощенного варианта корректора.

Если отказаться от требования симметричного регулирования АЧХ на участках их подъема и спада (кстати, необходимость спада практически не возникает), то можно еще более упростить схему (рис. 3,а). Приведенные на рис. З.б ЛАЧХ регулятора соответствуют крайним положениям движков резисторов R2, R4. Достоинство такого регулятора - простота, но поскольку все его характеристики взаимосвязаны, для удобства регулирования целесообразно выбирать п=3...10. С ростом п крутизна подъема растет, а спада - снижается. Все сказанное выше о традиционных вариантах корректора Баксандала в полной мере относится и к этому, предельно упрощенному варианту.


Puc.3


Однако схема регулятора тембра Баксандала и ее варианты - отнюдь не единственная возможная реализация пассивного двухполосного регулятора тембра. Вторая группа регуляторов выполнена не на базе мостов, а на базе частотно-зависимого делителя напряжения. В качестве примера изящного схемотехнического решения регулятора можно привести темброблок, в свое время использовавшийся в различных вариациях в ламповых усилителях. "Изюминкой" данного регулятора является изменение частот перегиба АЧХ в процессе регулирования тембра, что приводит к интересным эффектам в звучании. Базовая его схема изображена на рис. 4,а, а аппроксимированные ЛАЧХ - на рис. 4,6. Там же приведены расчетные зависимости для определения постоянных времени точек перегиба.


Puc.4


Нетрудно заметить, что регулировка в области низших звуковых частот изменяет частоты перегиба, не меняя наклон АЧХ. Когда движок переменного резистора R4 находится в нижнем (по схеме) положении, АЧХ на низших частотах линейна. При перемещении же движка вверх на ней появляется подъем, причем точка перегиба в процессе регулирования сдвигается в область более низких частот. При дальнейшем перемещении движка верхняя (по схеме) секция резистора R4 начинает шунтировать резистор R2, что вызывает сдвиг высокочастотной точки перегиба в область более высоких частот. Таким образом, при регулировании подъем низких частот дополняется спадом средних. Регулятор высших звуковых частот представляет собой простейший фильтр первого порядка и особенностей не имеет.

На базе этой схемы можно построить несколько вариантов темброблоков, позволяющих регулировать АЧХ в области низших и высших частот. Причем в области низших частот возможен и подъем, и спад АЧХ, а на высших - только подъем.

Вариант темброблока с регулированием частоты перегиба АЧХ в низкочастотной области показан на рис. 5,а, его ЛАЧХ - на рис. 5,6. Резистор R2 регулирует частоту перегиба АЧХ, a R5 - ее наклон. Совместное действие регуляторов позволяет получить значительные пределы и большую гибкость регулирования.


Puc.5


Схема упрощенного варианта темброблока приведена на рис. 6,а, его ЛАЧХ - на рис. 6,6. Он представляет собой, в сущности, гибрид низкочастотного звена темброблока, показанного на рис. 3,а, и высокочастотного звена темброблока, показанного на рис.4,а.


Puc.6


Объединив функции регулирования АЧХ в низкочастотной и высокочастотной областях, можно получить простой комбинированный регулятор тембра с одним органом управления, весьма удобный для применения в радиоприемной и автомобильной аппаратуре. Его принципиальная схема показана на рис. 7,а и ЛАЧХ - на рис. 7,6. В нижнем (по схеме) положении движка переменного резистора R1 АЧХ близка к линейной во всем диапазоне частот. При перемещении его вверх появляется подъем на низших частотах, причем низкочастотная точка перегиба в процессе регулирования сдвигается в область более низших частот. При дальнейшем перемещении движка верхняя (по схеме) секция резистора R1 включает в работу конденсатор С1, что приводит к подъему высших частот.


Puc.7


При замене переменного резистора R1 переключателем (рис. 8,а и 8,6) рассмотренный регулятор превращается в простейший тон-регистр (положение 1 - classic; 2 - jazz; 3 - rock), популярный в 50-х - 60-х годах и вновь используемый в эквалайзерах магнитол и музыкальных центров в 90-х.


Puc.8


Многообразие пассивных корректирующих цепей не исчерпывается предложенными вариантами. Немало забытых схемотехнических решений переживают сейчас второе рождение на новом качественном уровне.


ТБ Матюшкина



Характерными отличиями предлагаемого способа регулирования тембра от существующих являются:

· Формирование АЧХ; на низких частотах, прогнутой к оси абсцисс (наклон с уменьшением частоты плавно возрастает), в то время как известные РТ: имеют на НЧ прямо противоположную АЧХ, выпуклую в сторону от оси абсцисс (наклон с уменьшением частоты убывает);

· Изменение АЧХ одновременно и согласованно на всех частотах НЧ (и отдельно) ВЧ диапазонов при любой глубине регулирования. В традиционных РТ изменение формы АЧХ охватывает часть диапазона;

· Изменяющийся наклон АЧХ в зависимости от глубины: регулирования. В большинстве РТ наклон АЧХ фиксирован.




Большинство аудиолюбителей достаточно категорично и не готово к компромиссам при выборе аппаратуры, справедливо полагая, что воспринимаемый звук обязан быть чистым, сильным и впечатляющим. Как этого добиться?

Поиск данных по Вашему запросу:

Предварительный усилитель с темброблоком матюшкина

Схемы, справочники, даташиты:

Прайс-листы, цены:

Обсуждения, статьи, мануалы:

Дождитесь окончания поиска во всех базах.
По завершению появится ссылка для доступа к найденным материалам.

Пожалуй, основную роль в решении этого вопроса сыграет выбор усилителя.
Функция
Усилитель отвечает за качество и мощь воспроизведения звука. При этом при покупке стоит обратить внимание на следующие обозначения, знаменующие внедрение высоких технологий в производство аудио - аппаратуры:


  • Hi-fi. Обеспечивает максимальную чистоту и точность звука, освобождая его от посторонних шумов и искажений.
  • Hi-end. Выбор перфекциониста, готового немало заплатить за удовольствие различать мельчайшие нюансы любимых музыкальных композиций. Нередко к этой категории относят аппаратуру ручной сборки.

Технические характеристики, на которые следует обратить внимание:

  • Входная и выходная мощность. Решающее значение имеет номинальный показатель выходной мощности, т.к. краевые значения часто недостоверны.
  • Частотный диапазон. Варьируется от 20 до 20000 Гц.
  • Коэффициент нелинейных искажений. Здесь все просто - чем меньше, тем лучше. Идеальное значение, согласно мнению экспертов - 0,1%.
  • Соотношение сигнала и шума. Современная техника предполагает значение этого показателя свыше 100 дБ, что сводит к минимуму посторонние шумы при прослушивании.
  • Демпинг-фактор. Отражает выходное сопротивление усилителя в его соотношении с номинальным сопротивлением нагрузки. Иными словами, достаточный показатель демпинг-фактора (более 100) уменьшает возникновение ненужных вибраций аппаратуры и т.п.

Следует помнить: изготовление качественных усилителей - трудоемкий и высокотехнологичный процесс, соответственно, слишком низкая цена при достойных характеристиках должна Вас насторожить.

Классификация

Чтобы разобраться во всем многообразии предложений рынка, необходимо различать продукт по различным критериям. Усилители можно классифицировать:

  • По мощности. Предварительный - своеобразное промежуточное звено между источником звука и конечным усилителем мощности. Усилитель мощности, в свою очередь, отвечает за силу и громкость сигнала на выходе. Вместе они образуют полный усилитель.

Важно: первичное преобразование и обработка сигнала происходит именно в предварительных усилителях.

  • По элементной базе различают ламповые, транзисторные и интегральные УМ. Последние возникли с целью объединить достоинства и минимизировать недостатки первых двух, например, качество звука ламповых усилителей и компактность транзисторных.
  • По режиму работы усилители подразделяются на классы. Основные классы - А, В, АВ. Если усилители класса А используют много энергии, но выдают высококачественный звук, класса B с точностью до наоборот, класс AB представляется оптимальным выбором, представляя собой компромиссное соотношение качества сигнала и достаточно высокого КПД. Также различают классы C, D, H и G, возникшие с применением цифровых технологий. Также различают однотактные и двухтактные режимы работы выходного каскада.
  • По количеству каналов усилители могут быть одно-, двух- и многоканальными. Последние активно применяются в домашних кинотеатрах для формирования объемности и реалистичности звука. Чаще всего встречаются двухканальные соответственно для правой и левой аудиосистем.

Внимание: изучение технических составляющих покупки, конечно, необходимо, но зачастую решающим фактором является элементарное прослушивание аппаратуры по принципу звучит-не звучит.

Применение

Выбор усилителя в большей степени обоснован целями, для которых он приобретается. Перечислим основные сферы использования усилителей звуковой частоты:

  1. В составе домашнего аудиокомплекса. Очевидно, что лучшим выбором является ламповый двухканальный однотакт в классе А, также оптимальный выбор может составить трехканальный класса АВ, где один канал определен для сабвуфера, с функцией Hi - fi.
  2. Для акустической системы в автомобиле. Наиболее популярны четырехканальные усилители АВ или D класса, в соответствии с финансовыми возможностями покупателя. В автомобилях также востребована функция кроссовер для плавной регулировки частот, позволяющей по мере необходимости срезать частоты в высоком или низком диапазоне.
  3. В концертной аппаратуре. К качеству и возможностям профессиональной аппаратуры обоснованно предъявляются более высокие требования в силу большого пространства распространения звуковых сигналов, а также высокой потребности в интенсивности и длительности использования. Таким образом, рекомендуется приобретение усилителя классом не ниже D, способного работать почти на пределе своей мощности (70-80% от заявленной), желательно в корпусе из высокотехнологичных материалов, защищающем от негативных погодных условий и механических воздействий.
  4. В студийной аппаратуре. Все вышеизложенное справедливо и для студийной аппаратуры. Можно добавить о наибольшем диапазоне воспроизведения частот - от 10 Гц до 100 кГц в сравнении с таковым от 20 Гц до 20 кГц в бытовом усилителе. Примечательна также возможность раздельной регулировки громкости на различных каналах.

Таким образом, чтобы долгое время наслаждаться чистым и качественным звуком, целесообразно заранее изучить все многообразие предложений и подобрать вариант аудио аппаратуры, максимально отвечающий Вашим запросам.

 


Читайте:



Как называется стойка шасси самолета

Как называется стойка шасси самолета

ШАССИ САМОЛЕТА Компоновка шасси Шасси самолета представляют систему опор, необходимых для маневрирования по аэродрому, разбега и пробега...

Леска и диски для мотокос Caiman Триммерная головка caiman

Леска и диски для мотокос Caiman Триммерная головка caiman

Леска триммерная Caiman Pro 2.5 мм 15 м имеет длину в 15 метров, по типу сечения леска круглая, ее диаметр – 2.5 миллиметра. Данная леска получила...

Skyrim — Сюжетный мод «Колеса Затишья

Skyrim — Сюжетный мод «Колеса Затишья

The Wheels of Lull — огромный, полностью озвученный сюжетный мод, который тесно переплетен с миром Скайрима . Игроку предстоит вступить в отряд...

Схема автомобильного генератора: принцип работы

Схема автомобильного генератора: принцип работы

Проверка обмотки возбуждения на межвитковое замыкание Межвитковое замыкание вызывает увеличение силы тока воз­буждения. Из-за перегрева обмотки...

feed-image RSS