Главная - Советы
Генератор коротких импульсов схема. Генератор импульсных токов. Генератор перекрывающих импульсов

Требования к генераторам импульсов (ГИ) включают в себя необходимость достижения высокого КПД. Кроме того, они определяются свойствами межэлектродного промежутка (МЭП) – резко нелинейного элемента электрической цепи.

Стабильность импульсов тока – постоянство их длительности зависит от постоянства свойств промежутка и крутизны переднего фронта импульса напряжения. Чем больше эта крутизна, тем стабильнее импульсы тока. Отсюда следует еще одно требование к генераторам импульсов – высокая степень крутизны переднего фронта импульса напряжения.

Подвод импульсов энергии к межэлектродному промежутку при ЭЭО можно осуществить по структурной схеме показанной на рис. 1, а.

Рис.1 Структурные схемы источника питания для установки электроэрозионной обработки и временные диаграммы напряжения и тока

В течение времени τ и коммутатор К замкнут и источник питания отдает нагрузке (МЭМ) мощность Р и, которая в n раз превосходит среднюю мощность за период следования импульсов Т.

Мощность источника питания должна быть равной Р и = I m *U m , где I m и U m – амплитудные значения напряжения и тока в течение импульса. Она расходуется только в промежутке времени τ и.

Если пренебречь потерями в накопителе энергии то отдаваемая накопителем в МЭМ энергия составит A=P и *τ и, а мощность источника P=A/T= P и *τ и /T=P и /n, т.е. при введении в структурную схему накопителя энергии мощность источника может быть уменьшена в n раз.

Схема электроэрозионной установки, обеспечивающая работу с накопителями энергии, приведена на рис. 1, б.

В течение паузы P и *τ и коммутатор К находится в положении 1 и через ограничитель тока накопителем от источника питания потребляется мощность P/n. Накопитель при этом запасает энергию A=P и *τ и, которая при переключении коммутатора К на время импульса τ и в положение 2 отдает мощность P и =A/ τ и.

Работа по этой схеме дает возможность трансформировать мощность источника P=P и /n в мощность, которая расходуется при нагрузке.

Импульсные генераторы различают по принципу действия, конструкции и параметрам импульсов. ГИ условно подразделяют на зависимые, ограниченно-зависимые и независимые. В первых из них параметры генерируемых импульсов определяются физическим состоянием межэлектродного промежутка. В независимых генераторах импульсы не связаны с состоянием МЭП.

Электрическая энергия в накопителе может запасаться в виде электрического поля конденсатора или электромагнитного поля индуктивной катушки. Применяются также комбинированные накопители содержащие активные сопротивления, емкость и индуктивность – релаксационные генераторы (рис. 2).

Рис.2 Принципиальные схемы релаксационных генераторов для установок ЭЭО

В процессе их разрядки расходуется энергия, накопленная в реактивных элементах цепи (конденсаторе или индуктивной катушке).

RC-генератор импульсов (рис. 2, а) состоит из последовательно соединенных источника питания G , ключа К , токоограничивающего сопротивления R 1 и накопительного конденсатора С 1 , подключенного параллельно МЭП.

Емкостной накопитель заряжается от источника питания через ограничивающее сопротивление R 1 благодаря чему заводной ток много меньше тока импульса I и. Ток зарядки конденсатора определится из соотношения i 1 =(dUc/dτ)*С. Напряжение на конденсаторе где U co – начальное напряжение на конденсаторе в момент τ=0. К концу зарядки напряжение U c будет равно напряжению источника питания. Разрядка происходит в течение времени τ=T /n . В случае большой скважности импульсов среднее значение разрядного тока во время прохождения импульса τ и в n раз больше тока зарядки, поэтому емкостной накопитель является по существу трансформатором тока.

В индуктивном накопителе скорость нарастания тока в индуктивности определяется ее значением и приложенным напряжением. Требуемая сила тока I и может быть получена и при малых значениях падения напряжения на индуктивности U к <

В процессах электроэрозионной обработки более широко применяются генераторы с емкостными накопителем, поскольку индуктивный накопитель уступает емкостному по энергетическим показателям.

Схема импульсного LC -генератора показан на рис. 2, б. Зарядный тока проходит к конденсатору С от источника питания G через обмотку вибратора L . Вначале он притягивает якорь Я электромагнитного вибратора и увеличивает межэлектродный промежуток, поднимая электрод-инструмент.

К концу зарядки конденсатора ток через обмотку вибратора постепенно спадает, удерживающая якорь вибратора электромагнитная сила ослабевает и электроды начинают сближаться, уменьшая МЭП. После пробоя МЭП и прохождения импульса тока цикл работы генератора повторяется. Частота импульсов определяется соотношением L и C в цепи генератора.

Генераторы, выполненные по такой схеме, имеют высокие КПД и производительность.

Введение в зарядную цепь RC-генератора индуктивности (переход к генератору RLC ) повышает КПД генератора, так как в этом случае снижается токограничиваюцее сопротивление. RLC -генераторы (рис. 2, в) работают при более низком напряжении чем RC-генераторы, так как при наличии резонанса между L и С напряжение на конденсаторе-накопителе оказывается больше напряжения источника питания.

Уравнение переходного процесса зарядной цепи RLC -генератора имеет вид

Из данного уравнения следует, что заряд конденсатора может происходить по экспоненциальному либо по колебательному закону.

Колебательный процесс возникает при . В таком режиме работы зарядной цеп напряжение на конденсаторе в конце зарядного периода τ зар равно почти удвоенной ЭДС.

В действительности максимальное напряжение до которого может зарядится конденсатор, зависит от отношения R 1 /(2L 1).

В ЭЭО применяется также СС -генератор импульсов, в котором в качестве токоограничивающего элемента используется конденсатор С 1 . Такой генератор обладает более высоким КПД по сравнению с LC -генератором с электромагнитным вибратором. Частотные свойства СС -генераторов определяются в основном частотными характеристиками диодов выпрямителя В .

Основной недостаток релаксационных генераторов – связь частоты импульсов тока с физическим состоянием МЭП. Он может быть устранен, если в разрядную цепь ввести управляемый переключатель, который в заданный момент времени подключал бы к МЭП накопительный конденсатор.

Для питания устройств ЭЭО существуют статические генераторы импульсов, регулирующие временные и энергетические параметры в широком диапазоне при отсутствии накопительных элементов. В них легко формируются прямоугольные и униполярные импульсы. По способу генерирования их подразделяют на генераторы с независимым возбуждением, автогенераторы и инверторы.

Конструктивно они выполнены в основном на транзисторных или тиристорных приборах.

Структурная схема широкодиапазонного генератора импульсов показана на рис. 2.3.


Рис.3 Структурная схема широкодиапазонного транзисторного генератора импульсов

Она включает в себя источник питания, силовые блоки, число которых может быть равно шести, с разделительным диодом VD, блок поджига, задающий генератор, предварительный усилитель мощности, рабочий промежуток (МЭП), блок защиты от коротких замыканий. В состав силовых блоков и блока поджига включены силовые транзисторы, работающие в ключевом режиме и переключающиеся синхронно от задающего генератора. При включении транзисторов от блока поджига подается маломощный импульс. Он способствует пробою промежутка и формированию низковольтного разряда. До пробоя разделительный диод Д заперт. После пробоя напряжение на промежутке снижается до 40-25 В, диод Д открывается и через промежуток проходит импульс тока, значение которого определяется количеством включенных параллельно силовых блоков. Их синхронное выключение прерывает разряд. При коротком замыкании электродного промежутка МЭП все транзисторы силовых блоков отключаются. Подача импульсов к МЭП возобновляется после ликвидации короткого замыкания.

Для ЭЭО металлов импульсами больших энергий с частотой 50-100 Гц используют статические генераторы импульсов – трансформаторы промышленной частоты с вентилем.

Импульсы энергии длительностью до миллисекунд получают с помощью генераторов импульсов, которые по принципу работы подразделяют на коммутаторные и индукторные генераторы.

Магнитный коммутаторный генератор (МКГ) включает в себя переменно-полюсную магнитную систему на статоре и обмотку на якоре. Обмотка якоря на его окружности распределена неравномерно на узких частях под полюсами, которых у МКГ значительно больше, чем у обычных машин, благодаря чему повышается частота тока генератора. При вращении якоря генератора в его обмотке, расположенной на узком участке напротив полюсов индуктора, в момент прохождения его переменнополюсного индуктора индуцируется симметричная импульсная ЭДС.

Униполяризацию импульсов производят с помощью расположенного на одном валу с якорем коллектора (коммутатора), состоящего из двух систем сегментов с наложенными на них щетками. Наличие пауз между импульсами облегчает коммутацию поскольку переход щеток с одной системы сегментов на другую происходит в момент отсутствия напряжения в обмотке якоря.

Машинный индукторный генератор импульсов (МТИ) – электрическая машина бесколлекторного типа, вырабатывающая переменное напряжение повышенной частоты. Его основная особенность – отсутствие вращающейся полюсной системы, которая заменена зубчатым индуктором. Обмотка якоря и возбуждение расположены на статоре генератора. Переменный магнитный поток возникает за счет изменения сопротивления магнитной цепи генератора, обусловленного зубчатостью вращающегося индуктора.

Вследствие применения зубчатого индуктора получают несимметричную кривую переменного напряжения с различными амплитудами полуволн положительной и отрицательной полярности. При достаточно малой амплитуде обратной полуволны напряжения пробой МЭП происходит только при импульсах напряжений прямой полярности, в результате чего импульсы тока всегда будут униполярными.

Промышленные источники питания установок ЭЭО .

Тиристорный генератор импульсов типа TГ-250-0,15М предназначен для преобразования трехфазного переменного тока промышленной частоты в импульсный ток частотой 150 Гц с регилируемой скважностью. Он применяется в качестве источника питания технологическим током электроэрозионных станков моделей 4723, 4А724, 4Д723, 4Д26.

Максимальная производительность станка при питании его от тиристорного генератора импульсов составляет 4000 мм 3 /мин в случае обработке стали 45 медными инструментом и 3500 мм 3 /мин при обработке графитовым инструментом.

В состав генератора импульсов входят блоки вентилей, поджига, управления, регулятора подоги и сопротивлений, а также трансформаторы и индуктивные балластные сопротивления. Блок вентилей собран по схеме трехфазного полу-управляемого моста на диодах и тиристорах. Блок поджига синхронно с силовыми генерирует высоковольтные импульсы амплитудой 400-500 В, которые пробивают эрозионный промежуток и формируют низковольтный разряд. Для автоматического поддержания рабочего расстояния эрозионного промежутка предусмотрен блок регулирования подачи с обратной связью по напряжению. Конструктивно генератор импульсов выполнен в виде металлического шкафа двухстороннего обслуживания. Охлаждение воздушное принудительное.

Изготовитель – ПО «Преобразователь», г. Запорожье.


Задачей расчета являетсяопределение структуры электрической схемы, выбор элементной базы, определение параметров электрической схемы генераторов импульсов.

Исходные данные:

· вид технологического процесса и его характеристики;

· конструктивное использование разрядной цепи;

· характеристики напряжения питания;

· параметры электрического импульса и др.

Последовательность расчета:

Последовательность расчета зависит от структуры электрической схемы генератора, которая состоит полностью или частично из следующих элементов: источник постоянного (переменного) напряжения, автогенератор, выпрямитель, разрядная цепь, высоковольтный трансформатор, нагрузка (рис.2.14).

· расчет преобразователя напряжения (рис. 2.15, а);

· расчет собственно генератора импульсов (рис. 2.16).


2.14. Полная структурная схема генератора импульсов: 1 – источник напряжения; 2 – автогенератор; 3 – выпрямитель; 4 – сглаживающий фильтр; 5 – разрядная цепь с высоковольтным трансформатором; 6 – нагрузка.

Расчет преобразователя (рис. 2.15 а). Напряжение питания U n =12В постоянного тока. Выбираем выходное напряжение преобразователя U 0 = 300В при токе нагрузки J 0 = 0,001 А, выходная мощность P 0 =0,3 Вт, частота f 0 =400Гц.

Выходное напряжение преобразователя выбираем из условий повышения стабильности частоты генератора и для получения хорошей линейности выходных импульсов напряжения, т. е. U n >>U вкл.тир, обычно U n =2U вкл.тир.

Частота выходного напряжения задается из условий оптимальной работоспособности задающего генератора преобразователя напряжения.

Величины Р 0 и U 0 позволяют использовать в схеме генератора динистор VS серии KY102.

В качестве транзистора VT используем МП26Б, для которого предельные режимы следующие: U кбм = 70В, I КМ = 0,4А, I бм = 0,015А, U кбм = 1В.

Сердечник трансформатора предлагаем выполненным из электротехнической стали. Принимаем В М = 0,7Тл, η = 0,75, 25с.

Проверяем пригодность выполняемого трансформатора для работы в схеме преобразователя по условиям:

U кбм ≥2,5U n ; I км ≥1,2I кн; I бм ≥1,2I бн. (2.77)

Ток коллектора транзистора

Ток коллектора максимальный:

Согласно выходным коллекторным характеристикам транзистора МП26Б для данного коллекторного тока β ст =30, поэтому ток насыщения базы

А.

Ток базы:

I бм =1,2·0,003=0,0036А.

Следовательно, транзистор МП26Б по условию (2.78) пригоден для проектируемой схемы.

Сопротивление резисторов в цепи делителя напряжения:

Ом,; (2.79)

Ом.

Принимаем ближайшие стандартные значения сопротивлений резисторов R 1 =13000 Ом, R 2 =110 Ом.

Резистором R в цепи базы транзистора регулируют выходную мощность генератора, его сопротивление принимают 0,5…1 кОм.

Сечение сердечника трансформатора ТV1:



Рис 2.15. Принципиальная электрическая схема генератора импульсов: а – преобразователь;

б – генератор импульсов

Выбираем сердечник Ш8×8, для которого S c =0,52·10 -4 м2 .

Количество витков в обмотках трансформатора TV1:

Вит.; (2.81)

вит.; (2.82)

вит. (2.83)

Емкость конденсатора фильтра VC1:

Диаметр проводов обмоток трансформатора TV1:

Выбираем стандартные диаметры проводов d 1 =0,2 мм, d 2 = мм, d 3 =0,12 мм.

С учетом толщины эмаль изоляции d 1 =0,23 мм, d 2 = 0,08мм, d 3 =0,145 мм.



Рис. 2.16. Расчетная схема генератора импульсов

Расчет генераторов импульсов (рис. 2.16)

Принимаем напряжение на входе генератора равным напряжению на вы­ходе преобразователя U 0 = 300 В. Частота импульсов f =1…2 Гц. Амплитуда на­пряжения импульса не более 10 кВ. Количество электричества в импульсе не более 0,003 Кл. Длительность импульса до 0,1 с.

Выбираем диод VD типа Д226Б (U обр = 400 В, I пр = 0,3 А, U пр = 1 В) и тири­стор типа КН102И (U вкл =150 В, I пр т =0,2 А, U пр =1,5 В, I вкл =0,005 А, I выкл = 0,015 А, τ вкл = 0,5·10 -6 с τ выкл = 40·10 -6 с).

Прямое сопротивление постоянному току диода R д.пр = 3,3 Ом и тиристора R т.пр = 7,5 Ом.

Период повторения импульсов для заданного диапазона частот:

. (2.86)

Сопротивление зарядной цепи R 3 должно быть таким, чтобы

Ом. (2.88)

Тогда R 3 =R 1 +R д.пр =20·10 3 +3,3=20003,3 Ом.

Ток заряда:

А. (2.89)

Резистор R 2 ограничивает ток разряда до безопасной величины. Его сопротивление:

Ом, (2.90)

где U p – напряжение на зарядном конденсаторе VC2 в начале разряда, его величина равна U выкл. При этом должно соблюдаться условие R 1 >>R 2 (20·10 3 >>750).

Сопротивление разрядной цепи:

R p =R 2 R т. пр =750+7,5=757,5 Ом.

Условия устойчивого включения (2.91, 2.92) выполняются.

, , (2.91)

, . (2.92)

Емкость конденсатора VC2:

. (2.93)

Емкость VC2 для частоты f=1 Гц:

Ф

И для частоты 2 Гц:

С 2 =36·10 -6 Ф.

Амплитуда тока в цепи заряда конденсатора VC2

, (2.94)

Амплитуда тока в цепи заряда конденсатора VC2:

, (2.95)

Энергия импульса:

Дж. (2.96)

Максимальное количество электричества в импульсе:

q м =I p τ p =I p R p C 2 =0,064·757,5·72·10 -6 =0,003 Кл (2.97)

не превышает заданное значение.

Рассчитаем параметры выходного трансформатора TV2.

Расчетная мощность трансформатора:

Вт, (2.98)

где η т = 0,7…0,8 – КПД маломощного трансформатора.

Площадь сечения сердечника трансформатора:

Количество витков каждой обмотки трансформатора, приходящееся на

вит/В. (2.100)

Количество витков в обмотках трансформатора TV2:

W 4 =150 N=150·16,7=2505 вит.; (2.101)

W 5 =10000·16,7=167·10 3 вит.

Диаметр проводов в обмотках (2.85):

мм;

мм.

Выбираем стандартные диаметры проводов с эмалированной изоляцией d 4 =0,2 мм, d 5 =0,04 мм.

Пример. Определить напряжение и токи в схеме рис. 2.16.

Дано: U с = 300 В переменного тока 400 Гц, С = 36·10 -6 Ф, R д.пр = 10 Ом, R т.пр =2,3 Ом, L w =50 мГн, R 1 =20 кОм, R 2 =750 Ом.

Напряжение на конденсаторе в момент заряда:

, (2.102)

где τ ст = 2·10 4 ·36·10 -6 =0,72 с.

Полное сопротивление цепи заряда емкости VC2:

Ток заряда равен:

А.

И вот, наконец, дошли руки. После сборок мелких катушек решил замахнуться на новую схему, более серьезную и сложную в настройке и работе. Перейдем от слов к делу. Полная схема выглядит так:

Работает по принципу автогенератора. Прерыватель пинает драйвер UCC27425 и начинается процесс. Драйвер подает импульс на GDT (Gate Drive Transformator - дословно: трансформатор, управляющий затворами) с GDT идут 2 вторичные обмотки включенные в противофазе. Такое включение обеспечивает попеременное открытие транзисторов. Во время открытия транзистор прокачивает ток через себя и конденсатор 4,7 мкФ. В этот момент на катушке образуется разряд, и сигнал идет по ОС в драйвер. Драйвер меняет направление тока в GDT и транзисторы меняются (который был открытым - закрывается, а второй открывается). И этот процесс повторяется до тех пор, пока идет сигнал с прерывателя.

GDT лучше всего мотать на импортном кольце - Epcos N80. Обмотки мотаются в соотношении 1:1:1 или 1:2:2. В среднем порядка 7-8 витков, при желании можно рассчитать. Рассмотрим RD цепочку в затворах силовых транзисторов. Эта цепочка обеспечивает Dead Time (мертвое время). Это время когда оба транзистора закрыты. То есть один транзистор уже закрылся, а второй еще не успел открыться. Принцип такой: через резистор транзистор плавно открывается и через диод быстро разряжается. На осциллограмме выглядит примерно так:

Если не обеспечить dead time то может получиться так, что оба транзистора будут открыты и тогда обеспечен взрыв силовой.

Идем дальше. ОС (обратная связь) выполнена в данном случае в виде ТТ (трансформатора тока). ТТ наматывается на ферритовом кольце марки Epcos N80 не менее 50 витков. Через кольцо продергивается нижний конец вторичной обмотки, который заземляется. Таким образом высокий ток со вторичной обмотки превращается в достаточный потенциал на ТТ. Далее ток с ТТ идет на конденсатор (сглаживает помехи), диоды шоттки (пропускают только один полупериод) и светодиод (выполняет роль стабилитрона и визуализирует генерацию). Чтобы была генерация необходимо также соблюдать фразировку трансформатора. Если нет генерации или очень слабая - нужно просто перевернуть ТТ.

Рассмотрим отдельно прерыватель. С прерывателем конечно я попотел. Собрал штук 5 разных... Одни пучит от ВЧ тока, другие не работают как надо. Далее расскажу про все прерыватели, которые делал. Начну пожалуй с самого первого - на TL494 . Схема стандартная. Возможна независимая регулировка частоты и скважности. Схема ниже может генерировать от 0 до 800-900 Гц, если поставить вместо 1 мкФ конденсатор 4,7 мкФ. Скважность от 0 и до 50. То что нужно! Однако есть одно НО. Этот ШИМ контроллер очень чувствителен к ВЧ току и различным полям от катушки. В общем при подключении к катушке, прерыватель просто не работал, либо все по 0 либо CW режим. Экранирование частично помогло, но не решило проблему полностью.

Следущий прерыватель был собран на UC3843 очень часто встречается в ИИП, особенно АТХ, оттуда, собственно, его и взял. Схема тоже неплохая и не уступает TL494 по параметрам. Здесь возможна регулировка частоты от 0 до 1кГц и скважность от 0 до 100%. Меня это тоже устраивало. Но опять эти наводки с катушки все испортили. Здесь даже экранирование нисколько не помогло. Пришлось отказаться, хотя собрал добротно на плате...

Надумал вернуться к дубовым и надежным, но малофункциональным 555 . Решил начать с burst interrupter. Суть прерывателя заключается в том, что он прерывает сам себя. Одна микросхема (U1) задает частоту, другая (2) длительность, а третья (U3) время работы первых двух. Все бы ничего, если бы не маленькая длительность импульса с U2. Этот прерыватель заточен под DRSSTC и может работать с SSTC но мне это не понравилось- разряды тоненькие, но пушистые. Далее было несколько попыток увеличить длительность, но они не увенчались успехом.

Схемы генераторов на 555

Тогда решил изменить принципиально схему и сделать независимую длительность на конденсаторе, диоде и резисторе. Возможно многие посчитают эту схему абсурдной и глупой, но это работает. Принцип такой: сигнал на драйвер идет до тех пор пока конденсатор не зарядится (с этим думаю никто не поспорит). NE555 генерирует сигнал, он идет через резистор и конденсатор, при этом если сопротивление резистора 0 Ом, то идет только через конденсатор и длительность максимальна (на сколько хватает емкости) не зависимо от скважности генератора. Резистор ограничивает время заряда, т.е. чем больше сопротивление, тем меньшей времени будет идти импульс. На драйвер идет сигнал меньшей длительностью, но тоже частоты. Разряжается конденсатор быстро через резистор (который на массу идет 1к) и диод.

Плюсы и минусы

Плюсы : независимая от частоты регулировка скважности, SSTC никогда не уйдет в CW режим, если подгорит прерыватель.

Минусы : скважность нельзя увеличивать "бесконечно много", как например на UC3843 , она ограничена емкостью конденсатора и скважностью самого генератора (не может быть больше скважности генератора). Ток через конденсатор идет плавно.

На последнее не знаю как драйвер реагирует (плавную зарядку). С одной стороны драйвер также плавно может открывать транзисторы и они будут сильнее греться. С другой стороны UCC27425 - цифровая микросхема. Для нее существует только лог. 0 и лог. 1. Значит пока напряжение выше порогового - UCC работает, как только опустилось ниже минимального - не работает. В этом случае все работает в штатном режиме, и транзисторы открываются полностью.


Перейдем от теории к практике

Собирал генератор Тесла в корпус от АТХ. Конденсатор по питанию 1000 мкф 400в. Диодный мост из того же АТХ на 8А 600В. Перед мостом поставил резистор 10 Вт 4,7 Ом. Это обеспечивает плавный заряд конденсатора. Для питания драйвера поставил трансформатор 220-12В и еще стабилизатор с конденсатором 1800 мкФ.

Диодные мосты прикрутил на радиатор для удобства и для отвода тепла, хотя они почти не греются.

Прерыватель собрал почти навесом, взял кусок текстолита и канцелярским ножом вырезал дорожки.

Силовая была собрана на небольшом радиаторе с вентилятором, позже выяснилось, что этого радиатора вполне достаточно для охлаждения. Драйвер смонтировал над силовой через толстый кусок картона. Ниже фото почти собранной конструкции генератора Тесла, но находящейся на проверке, измерял температуру силовой при различных режимах (видно обычный комнатный термометр, прилепленный к силовой на термопласту).

Тороид катушки собран из гофрированной пластиковой трубы диаметром 50 мм и обклеенным алюминиевым скотчем. Сама вторичная обмотка намотана на 110 мм трубе высотой 20 см проводом 0,22 мм около 1000 витков. Первичная обмотка содержит аж 12 витков, сделал с запасом, дабы уменьшить ток через силовую часть. Делал с 6 витками в начале, результат почти одинаков, но думаю не стОит рисковать транзисторами ради пары лишних сантиметров разряда. Каркасом первички служит обычный цветочный горшок. С начала думал что не будет пробивать если вторичку обмотать скотчем, а первичку поверх скотча. Но увы, пробивало... В горшке конечно тоже пробивало, но здесь скотч помог решить проблему. В общем готовая конструкция выглядит так:

Ну и несколько фоток с разрядом

Теперь вроде бы все.

Ещё несколько советов: не пытайтесь сразу воткнуть в сеть катушку, не факт что она сразу заработает. Постоянно следите за температурой силовой, при перегреве может бабахнуть. Не мотайте слишком высокочастотные вторички, транзисторы 50b60 могут работать максимум на 150 кГц по даташиту, на самом деле немного больше. Проверяйте прерыватели, от них зависит жизнь катушки. Найдите максимальную частоту и скважность, при которой температура силовой стабильная длительное время. Слишком большой тороид может тоже вывести из строя силовую.

Видео работы SSTC

P.S. Транзисторы силовые использовал IRGP50B60PD1PBF. Файлы проекта . Удачи, с вами был [)еНиС !

Обсудить статью ТЕСЛА ГЕНЕРАТОР

Импульсный генератор тока

Импульсный генератор тока – это аппарат, генерирующий импульсы тока большой силы.

Импульсные генераторы тока применяются при испытании высоковольтной техники и при изучении электрических разрядов. Также при соединении импульсного генератора тока с импульсным генератором напряжения получается прибор, способный создать искусственную молнию.

В состав импульсного генератора тока входят параллельно соединенные конденсаторы, выпрямитель и искровой зарядник. Сначала конденсаторы медленно заряжают до такого напряжения, величина которого не превосходит величины напряжения пробоя разрядника. После этого на поджигающий электрод разрядника происходит подача импульса напряжения, вследствие чего происходит пробой разрядника. Затем конденсаторы разряжаются на испытуемый объект. Для увеличения значения тока нужно снизить индуктивность и увеличить емкость, для этого необходимо максимально приблизить конденсаторы к испытуемому прибору.

Из книги Большая Советская Энциклопедия (ИМ) автора БСЭ

Из книги Большая Советская Энциклопедия (ПЕ) автора БСЭ

Из книги Большая Советская Энциклопедия (ПО) автора БСЭ

Из книги Большая Советская Энциклопедия (СИ) автора БСЭ

Из книги Большая Советская Энциклопедия (ТР) автора БСЭ

Из книги Релейная защита в распределительных электрических Б90 сетях автора Булычев Александр Витальевич

Из книги Большая энциклопедия техники автора Коллектив авторов

Из книги автора

Из книги автора

Из книги автора

Приложение 5 Кривые предельных кратностей тока трансформаторов тока 10 кВ и 35 кВ На рис. П5.1, а показаны кривые предельных кратностей тока ТТ типа ТПЛ-10 при допустимой погрешности 10 %: 1 - для ТТ с коэффициентами трансформации от 5/5 до 300/5 класса Р; 2 - для ТТ с коэффициентами

Из книги автора

Генератор постоянного тока Генератор постоянного тока – это машина, способная преобразовывать механическую энергию вращения в электрическую энергию постоянного тока.История создания генераторов постоянного токаВ 1831 г. Майкл Фарадей открыл закон магнитной индукции,

Из книги автора

Импульсный генератор напряжения Импульсный генератор напряжения – это аппарат, в задачи которого входит создание электрических импульсов высокого напряжения и их генерирование с амплитудой до 10 000 000 В.В состав импульсного генератора напряжения входит группа

Из книги автора

Импульсный модулятор Импульсный модулятор – это специальный прибор какой-либо импульсной станции, в задачи которого входит контролирование работы генератора высокочастотных колебаний.Импульсный модулятор состоит из высоковольтного выпрямителя, катушки

Из книги автора

Импульсный трансформатор Импульсный трансформатор – это высокочастотный трансформатор. Используется для передачи сигналов малой мощности в широком диапазоне частот без искажения формы импульса, для создания импульсов высокого напряжения, изменения полярности

Из книги автора

Источники тока Источники тока – это особые аппараты, способные создать электрическое поле в проводнике, а также электрическую сеть.В 1786 г. итальянский ученый Л. Гальвано выпустил книгу, в которой рассматривал воздействие электрического тока на живые организмы. Книга

Из книги автора

Импульсный ракетный двигатель Импульсный ракетный двигатель – ракетный двигатель, который сообщает аппарату импульс, обусловленный кратковременным созданием значительной тяги. Режим работы такого двигателя состоит из многочисленных коротких по времени импульсов,

Наиболее распространены генераторы прямоугольных и линейно изменяющихся (пилообразных) импульсов напряжения.

Генераторы импульсных сигналов (импульсные генераторы) могут работать в одном из трех режимов: автоколебательном, ждущем и синхронизации.

В автоколебательном режиме генераторы непрерывно формируют импульсные сигналы без внешнего воздействия. В ждущем режиме генераторы формируют импульсный сигнал лишь по приходе внешнего (запускающего) сигнала. В режиме синхронизации генераторы вырабатывают импульсы напряжения, частота которых равна или кратна частоте синхронизирующего сигнала.

Генераторы прямоугольных импульсов делятся на мультивибраторы и блокинг-генераторы. И те и другие могут работать как в автоколебательном, так и в ждущем режимах.

Автоколебательные мультивибраторы могут быть построены на дискретных, логических элементах или операционных усилителях. Автоколебательный мультивибратор на основе ОУ представлен на рис. 11.12.

Рис. 11.12 . Автоколебательный мультивибратор на основе ОУ

В данной схеме с помощью резисторов R 1 иR 2 введена положительная обратная связь, что является необходимым условием для возникновения электрических колебаний. В зависимости от напряжения на выходе (которое может быть равно либо +Е пит, либо –Е пит, где Е пит – напряжение питания ОУ) на неинвертирующем входе ОУ устанавливается или напряжениеU +1 , или напряжениеU +2 . Емкость С, входящая в цепь отрицательной обратной связи, перезаряжается с постоянной времениτ= RC . Период следования импульсов Т определяется выражением

.

Таким образом, данный мультивибратор формирует прямоугольные импульсы напряжения.

Блокинг-генераторы используют для получения мощных прямоугольных импульсов малой длительности (от долей микросекунды до долей миллисекунды) и скважностью до нескольких десятков тысяч. Основным элементом таких генераторов является импульсный трансформатор (рис. 11.13).

Рис. 11.13. Автоколебательный блокинг-генератор

Блокинг-генератор может работать в автоколебательном, ждущем режимах или в режиме синхронизации. Во время паузы (выходное напряжение отсутствует) происходит перезаряд конденсатора по цепи E–R–W 2 с постоянной времениτ 1 =RC . В момент времени, когда напряжение на конденсаторе С (и, следовательно, на базе транзистора) становится равным нулю, транзистор начинает открываться (выходить из режима отсечки), начинает протекать ток коллектора, что вызывает появление сигнала положительной обратной связи (через обмотку трансформатораW 2), под действием которой транзистор скачкообразно переходит в режим насыщения. При этом конденсатор С перезаряжается по цепиW 2 –C– входное сопротивление транзистораr вх с постоянной времениτ 2 = r вх ·С . При увеличении напряжения на конденсаторе С ток базы начинает уменьшаться и в конце заряда транзистор выходит из насыщения и закрывается. После этого энергия, запасенная в индуктивности, разряжается на нагрузку. Так какr вх << R , то время нахождения транзистора в открытом состоянииt u , а следовательно, и длительность импульса на нагрузке значительно меньше периода следования импульсов.

Генератор линейно изменяющегося напряжения . Линейно изменяющимся напряжением (ЛИН) называют напряжение, которое в течение промежутка времени, называемого рабочим ходом, изменяется по линейному закону, а затем в течение промежутка времени, называемого обратным ходом, возвращается к исходному уровню (рис. 11.14).

Рис. 11.14. Линейно изменяющееся напряжение

На рис. 11.14 приняты следующие обозначения: U 0 –начальный уровень,U m –амплитуда ЛИН, Т р –время рабочего хода, Т 0 –время обратного хода.

Устройства, предназначенные для формирования ЛИН, называют генераторами ЛИН (ГЛИН). Генераторы ЛИН часто называют генераторами пилообразного напряжения.

Принцип построения генераторов ЛИН основан на заряде емкости постоянным током. Основой ГЛИН (рис. 11.15) является емкость, через которую от источника постоянного тока ИТ протекает постоянный ток, благодаря чему при разомкнутом ключевом устройстве КУ напряжение на емкости определяется выражением

, (приi с = I = const), т.е. изменяется по линейному закону.

ГЛИН могут работать либо в ждущем (рис. 11.15,а ), либо в автоколебательном режиме (рис. 11.15,б ). ГЛИН в автоколебательном режиме формирует ЛИН регулярно, а для получения ЛИН в ГЛИН в ждущем режиме необходим внешний импульс напряженияU вх.

Рис. 11.15. Генераторы линейно изменяющихся напряжений,

работающих в ждущем (а) и автоколебательном (б) режимах

Все ГЛИН можно разделить на три типа:

а) с интегрирующей RC-цепочкой (рис. 11.16);

б) с токостабилизирующим двухполюсником (рис. 11.17);

в) с компенсирующей обратной связью (ОС) (рис. 11.18).

Рис. 11.16. ГЛИН на основе транзисторного ключа

(с интегрирующей RC-цепочкой)

До момента времени t 1 транзисторный ключ находится в режиме насыщения, т.е. напряжениеU кэ , а значит, и напряжениеU вых ,равны нулю. При подаче в момент времениt 1 запирающего импульса напряжения транзистор входит в режим отсечки, и емкость С заряжается от источника Е к через резисторR к, причем напряжение на емкости стремится к уровню Е к. В момент времениt 2 транзистор вновь входит в режим насыщения, и емкость через малое сопротивление промежутка коллектор–эмиттер транзистора разряжается.

Рассмотрим принцип построения ГЛИН с токостабилизирующим двухполюсником, обеспечивающим протекание через него постоянного тока независимо от приложенного напряжения (рис. 11.17). Простейшим токостабилизирующим элементом является транзистор. При постоянном токе базы (например, i бэ ), даже при значительном уменьшении напряженияu эк между эмиттером и коллектором (например, отU 2 доU 1) коллекторный ток транзистора уменьшается незначительно.

Рис. 11.17. ГЛИН с токостабилизирующим двухполюсником

Недостатком данной схемы является то, что при подключении к выходу (т.е. к емкости С) сопротивления нагрузки искажается линейность выходного напряжения.

Рассмотрим ГЛИН с компенсирующей ОС (на основе ОУ) (рис. 11.18). В момент времени t 1 ключК размыкается и осуществляется и осуществляется прямой ход, а в момент времениt 2 ключ замыкается, емкостьС разряжается и на выходе устанавливается нулевое напряжения. ЕмкостьС заряжается постоянным током, а значит, напряжение на ней (как и напряжениеU вых ) изменяется по линейному закону (рис. 11.18,б ). Компенсирующее напряжениеU к повторяет напряжение на емкостиU c при размыкается ключа и заряде емкости от источникаU . Поскольку компенсирующее напряжение включено встречно по отношению к напряжению на емкости, то напряжение, приложенное к резисторуR , все время постоянно и равноU .

Рис. 11.18. ГЛИН с компенсирующей обратной связью

Протекающий через резистор R ток определяется выражением

i R =(E - U вх )/ R .

Если ОУ близок к идеальному, (К→ ∞ ,U вх → 0 ,i → 0 ), тоi R = E / R = const. Тогда выходное напряжение определяется выражением

.

 


Читайте:



Как подключить usb к штатной кассетной магнитоле

Как подключить usb к штатной кассетной магнитоле

Конечно, можно пойти в магазин, отстегнуть порядка 50 долларов, или больше, купить новую и не морочить себе голову. Но это же не наш метод! Итак,...

Схема простого вольтметр-индикатора бортовой сети автомобиля Светодиодный индикатор бортового напряжения автомобиля

Схема простого вольтметр-индикатора бортовой сети автомобиля Светодиодный индикатор бортового напряжения автомобиля

Прибор подключается к бортовой сети автомобиля и предназначен для оперативного определения ее состояния по четырем светодиодам. Которые индицируют...

Автомобильный усилитель – экономные варианты создания звука в салоне Как сделать автомобильный усилитель

Автомобильный усилитель – экономные варианты создания звука в салоне Как сделать автомобильный усилитель

Здравствуйте! Хочу представить вашему вниманию схему, фотографии и печатные платы автомобильного усилителя. Схемы эти легко встретить в интернете....

Щелкаем реле правильно: коммутация мощных нагрузок Реле разомкнутое

Щелкаем реле правильно: коммутация мощных нагрузок Реле разомкнутое

Реле – это переключатель. Причем не совсем обычный. Когда в подъезде лампочка загорается от звука шагов, это не волшебство, это работает реле. В...

feed-image RSS