Главная - Тюнинг
Простой генератор высоковольтных импульсов. Схемы генераторов импульсов. Генераторы с конденсаторами РР2
В один прекрасный день мне понадобился срочно генератор прямоугольных импульсов со следующими характеристиками:

--- Питание: 5-12в


---
Частота: 5Гц-1кГц.


---
Амплитуда выходных импульсов не менее 10в


--- Ток: около 100мА.

За основу был взят мультивибратор, он реализован на трех логических элементах микросхемы 2И-НЕ. Принцип которого при желании можно прочитать в Википедии. Но генератор сам по себе дает инверсный сигнал, что подтолкнуло меня применить инвертор (это 4-й элемент). Теперь мультивибратор дает нам импульсы положительного тока. Однако у мультивибратора нет возможности регулирования скважности. Она у него автоматически выставляется 50%. И тут меня осенило поставить ждущий мультивибратор реализованный на двух таких же элементах (5,6), благодаря которому появилась возможность регулировать скважность. Принципиальная схема на рисунке:

Естественно, предел указанный в моих требованиях не критичен. Все зависит от параметров С4 и R3 – где резистором можно плавно изменять длительность импульса. Принцип работы так же можно прочитать в википедии. Далее: для высокой нагрузочной способности был установлен эммитерный повторитель на транзисторе VT-1. транзистор применен самый распостранненый типа КТ315. резисторов R6 служит для ограничения выходного тока и зашита от перегорания транзистора в случае КЗ.

Микросхемы можно применять как ТТЛ, так и КМОП. В случае применения ТТЛ сопротивление R3 не более 2к. потому что: входное сопротивление этой серии приблизительно равно 2к. лично я использовал КМОП К561ЛА7 (она же CD4011) – два корпуса питание до 15в.

Отличный вариант для использования как ЗГ для какого ни будь преобразователя. Для использования генератора среди ТТЛ – подходят К155ЛА3, К155ЛА8 у последней коллекторы открыты и на выхода нужно вешать резисторы номиналом 1к.

Требования к генераторам импульсов (ГИ) включают в себя необходимость достижения высокого КПД. Кроме того, они определяются свойствами межэлектродного промежутка (МЭП) – резко нелинейного элемента электрической цепи.

Стабильность импульсов тока – постоянство их длительности зависит от постоянства свойств промежутка и крутизны переднего фронта импульса напряжения. Чем больше эта крутизна, тем стабильнее импульсы тока. Отсюда следует еще одно требование к генераторам импульсов – высокая степень крутизны переднего фронта импульса напряжения.

Подвод импульсов энергии к межэлектродному промежутку при ЭЭО можно осуществить по структурной схеме показанной на рис. 1, а.

Рис.1 Структурные схемы источника питания для установки электроэрозионной обработки и временные диаграммы напряжения и тока

В течение времени τ и коммутатор К замкнут и источник питания отдает нагрузке (МЭМ) мощность Р и, которая в n раз превосходит среднюю мощность за период следования импульсов Т.

Мощность источника питания должна быть равной Р и = I m *U m , где I m и U m – амплитудные значения напряжения и тока в течение импульса. Она расходуется только в промежутке времени τ и.

Если пренебречь потерями в накопителе энергии то отдаваемая накопителем в МЭМ энергия составит A=P и *τ и, а мощность источника P=A/T= P и *τ и /T=P и /n, т.е. при введении в структурную схему накопителя энергии мощность источника может быть уменьшена в n раз.

Схема электроэрозионной установки, обеспечивающая работу с накопителями энергии, приведена на рис. 1, б.

В течение паузы P и *τ и коммутатор К находится в положении 1 и через ограничитель тока накопителем от источника питания потребляется мощность P/n. Накопитель при этом запасает энергию A=P и *τ и, которая при переключении коммутатора К на время импульса τ и в положение 2 отдает мощность P и =A/ τ и.

Работа по этой схеме дает возможность трансформировать мощность источника P=P и /n в мощность, которая расходуется при нагрузке.

Импульсные генераторы различают по принципу действия, конструкции и параметрам импульсов. ГИ условно подразделяют на зависимые, ограниченно-зависимые и независимые. В первых из них параметры генерируемых импульсов определяются физическим состоянием межэлектродного промежутка. В независимых генераторах импульсы не связаны с состоянием МЭП.

Электрическая энергия в накопителе может запасаться в виде электрического поля конденсатора или электромагнитного поля индуктивной катушки. Применяются также комбинированные накопители содержащие активные сопротивления, емкость и индуктивность – релаксационные генераторы (рис. 2).

Рис.2 Принципиальные схемы релаксационных генераторов для установок ЭЭО

В процессе их разрядки расходуется энергия, накопленная в реактивных элементах цепи (конденсаторе или индуктивной катушке).

RC-генератор импульсов (рис. 2, а) состоит из последовательно соединенных источника питания G , ключа К , токоограничивающего сопротивления R 1 и накопительного конденсатора С 1 , подключенного параллельно МЭП.

Емкостной накопитель заряжается от источника питания через ограничивающее сопротивление R 1 благодаря чему заводной ток много меньше тока импульса I и. Ток зарядки конденсатора определится из соотношения i 1 =(dUc/dτ)*С. Напряжение на конденсаторе где U co – начальное напряжение на конденсаторе в момент τ=0. К концу зарядки напряжение U c будет равно напряжению источника питания. Разрядка происходит в течение времени τ=T /n . В случае большой скважности импульсов среднее значение разрядного тока во время прохождения импульса τ и в n раз больше тока зарядки, поэтому емкостной накопитель является по существу трансформатором тока.

В индуктивном накопителе скорость нарастания тока в индуктивности определяется ее значением и приложенным напряжением. Требуемая сила тока I и может быть получена и при малых значениях падения напряжения на индуктивности U к <

В процессах электроэрозионной обработки более широко применяются генераторы с емкостными накопителем, поскольку индуктивный накопитель уступает емкостному по энергетическим показателям.

Схема импульсного LC -генератора показан на рис. 2, б. Зарядный тока проходит к конденсатору С от источника питания G через обмотку вибратора L . Вначале он притягивает якорь Я электромагнитного вибратора и увеличивает межэлектродный промежуток, поднимая электрод-инструмент.

К концу зарядки конденсатора ток через обмотку вибратора постепенно спадает, удерживающая якорь вибратора электромагнитная сила ослабевает и электроды начинают сближаться, уменьшая МЭП. После пробоя МЭП и прохождения импульса тока цикл работы генератора повторяется. Частота импульсов определяется соотношением L и C в цепи генератора.

Генераторы, выполненные по такой схеме, имеют высокие КПД и производительность.

Введение в зарядную цепь RC-генератора индуктивности (переход к генератору RLC ) повышает КПД генератора, так как в этом случае снижается токограничиваюцее сопротивление. RLC -генераторы (рис. 2, в) работают при более низком напряжении чем RC-генераторы, так как при наличии резонанса между L и С напряжение на конденсаторе-накопителе оказывается больше напряжения источника питания.

Уравнение переходного процесса зарядной цепи RLC -генератора имеет вид

Из данного уравнения следует, что заряд конденсатора может происходить по экспоненциальному либо по колебательному закону.

Колебательный процесс возникает при . В таком режиме работы зарядной цеп напряжение на конденсаторе в конце зарядного периода τ зар равно почти удвоенной ЭДС.

В действительности максимальное напряжение до которого может зарядится конденсатор, зависит от отношения R 1 /(2L 1).

В ЭЭО применяется также СС -генератор импульсов, в котором в качестве токоограничивающего элемента используется конденсатор С 1 . Такой генератор обладает более высоким КПД по сравнению с LC -генератором с электромагнитным вибратором. Частотные свойства СС -генераторов определяются в основном частотными характеристиками диодов выпрямителя В .

Основной недостаток релаксационных генераторов – связь частоты импульсов тока с физическим состоянием МЭП. Он может быть устранен, если в разрядную цепь ввести управляемый переключатель, который в заданный момент времени подключал бы к МЭП накопительный конденсатор.

Для питания устройств ЭЭО существуют статические генераторы импульсов, регулирующие временные и энергетические параметры в широком диапазоне при отсутствии накопительных элементов. В них легко формируются прямоугольные и униполярные импульсы. По способу генерирования их подразделяют на генераторы с независимым возбуждением, автогенераторы и инверторы.

Конструктивно они выполнены в основном на транзисторных или тиристорных приборах.

Структурная схема широкодиапазонного генератора импульсов показана на рис. 2.3.


Рис.3 Структурная схема широкодиапазонного транзисторного генератора импульсов

Она включает в себя источник питания, силовые блоки, число которых может быть равно шести, с разделительным диодом VD, блок поджига, задающий генератор, предварительный усилитель мощности, рабочий промежуток (МЭП), блок защиты от коротких замыканий. В состав силовых блоков и блока поджига включены силовые транзисторы, работающие в ключевом режиме и переключающиеся синхронно от задающего генератора. При включении транзисторов от блока поджига подается маломощный импульс. Он способствует пробою промежутка и формированию низковольтного разряда. До пробоя разделительный диод Д заперт. После пробоя напряжение на промежутке снижается до 40-25 В, диод Д открывается и через промежуток проходит импульс тока, значение которого определяется количеством включенных параллельно силовых блоков. Их синхронное выключение прерывает разряд. При коротком замыкании электродного промежутка МЭП все транзисторы силовых блоков отключаются. Подача импульсов к МЭП возобновляется после ликвидации короткого замыкания.

Для ЭЭО металлов импульсами больших энергий с частотой 50-100 Гц используют статические генераторы импульсов – трансформаторы промышленной частоты с вентилем.

Импульсы энергии длительностью до миллисекунд получают с помощью генераторов импульсов, которые по принципу работы подразделяют на коммутаторные и индукторные генераторы.

Магнитный коммутаторный генератор (МКГ) включает в себя переменно-полюсную магнитную систему на статоре и обмотку на якоре. Обмотка якоря на его окружности распределена неравномерно на узких частях под полюсами, которых у МКГ значительно больше, чем у обычных машин, благодаря чему повышается частота тока генератора. При вращении якоря генератора в его обмотке, расположенной на узком участке напротив полюсов индуктора, в момент прохождения его переменнополюсного индуктора индуцируется симметричная импульсная ЭДС.

Униполяризацию импульсов производят с помощью расположенного на одном валу с якорем коллектора (коммутатора), состоящего из двух систем сегментов с наложенными на них щетками. Наличие пауз между импульсами облегчает коммутацию поскольку переход щеток с одной системы сегментов на другую происходит в момент отсутствия напряжения в обмотке якоря.

Машинный индукторный генератор импульсов (МТИ) – электрическая машина бесколлекторного типа, вырабатывающая переменное напряжение повышенной частоты. Его основная особенность – отсутствие вращающейся полюсной системы, которая заменена зубчатым индуктором. Обмотка якоря и возбуждение расположены на статоре генератора. Переменный магнитный поток возникает за счет изменения сопротивления магнитной цепи генератора, обусловленного зубчатостью вращающегося индуктора.

Вследствие применения зубчатого индуктора получают несимметричную кривую переменного напряжения с различными амплитудами полуволн положительной и отрицательной полярности. При достаточно малой амплитуде обратной полуволны напряжения пробой МЭП происходит только при импульсах напряжений прямой полярности, в результате чего импульсы тока всегда будут униполярными.

Промышленные источники питания установок ЭЭО .

Тиристорный генератор импульсов типа TГ-250-0,15М предназначен для преобразования трехфазного переменного тока промышленной частоты в импульсный ток частотой 150 Гц с регилируемой скважностью. Он применяется в качестве источника питания технологическим током электроэрозионных станков моделей 4723, 4А724, 4Д723, 4Д26.

Максимальная производительность станка при питании его от тиристорного генератора импульсов составляет 4000 мм 3 /мин в случае обработке стали 45 медными инструментом и 3500 мм 3 /мин при обработке графитовым инструментом.

В состав генератора импульсов входят блоки вентилей, поджига, управления, регулятора подоги и сопротивлений, а также трансформаторы и индуктивные балластные сопротивления. Блок вентилей собран по схеме трехфазного полу-управляемого моста на диодах и тиристорах. Блок поджига синхронно с силовыми генерирует высоковольтные импульсы амплитудой 400-500 В, которые пробивают эрозионный промежуток и формируют низковольтный разряд. Для автоматического поддержания рабочего расстояния эрозионного промежутка предусмотрен блок регулирования подачи с обратной связью по напряжению. Конструктивно генератор импульсов выполнен в виде металлического шкафа двухстороннего обслуживания. Охлаждение воздушное принудительное.

Изготовитель – ПО «Преобразователь», г. Запорожье.

Mitchell Lee

LT Journal of Analog Innovation

Источники импульсов с крутыми фронтами, имитирующие ступенчатую функцию, часто оказываются полезными при выполнении тех или иных лабораторных измерений. Например, если крутизна фронтов имеет порядок 1…2 нс, можно оценить время нарастания сигнала в кабеле RG-58/U или любом другом, взяв отрезок длиной всего 3…6 м. Рабочая лошадка многих лабораторий - вездесущий генератор импульсов HP8012B - не дотягивает до 5 нс, что недостаточно быстро для решения подобной задачи. Между тем, времена нарастания и спада выходных сигналов драйверов затворов некоторых контроллеров импульсных регуляторов могут быть менее 2 нс, что делает эти устройства потенциально идеальными источниками импульсов.

На Рисунке 1 показана простая схема реализации этой идеи, основанная на использовании контроллера обратноходового преобразователя , работающего на фиксированной частоте переключения. Собственная рабочая частота контроллера равна 200 кГц. Подача части выходного сигнала на вывод SENSE заставляет устройство работать с минимальным коэффициентом заполнения, формируя выходные импульсы длительностью 300 нс. Немаловажное значение для этой схемы имеет развязка питания, поскольку выходной ток, отдаваемый в нагрузку 50 Ом, превышает 180 мА. Элементы развязки 10 мкФ и 200 Ом минимизируют искажения вершины импульса без ущерба для крутизны фронтов.

Выход схемы подключается непосредственно к согласованной нагрузке 50 Ом, обеспечивая на ней размах сигнала около 9 В. В случае, когда первостепенное значение имеет качество импульсов, рекомендуется подавлять сигнал тройного прохождения, поглощая отражения от кабеля и удаленной нагрузки с помощью показанного на схеме последовательного согласования. Последовательное согласование, то есть, согласование на передающей стороне, оказывается полезным также тогда, когда схема работает на пассивные фильтры и иные аттенюаторы, рассчитанные на определенный импеданс источника сигнала. Выходной импеданс микросхемы LTC3803 равен примерно 1.5 Ом, что следует принимать во внимание при выборе сопротивления последовательного согласующего резистора. Последовательное согласование работает хорошо до импедансов, по меньшей мере, 2 кОм, выше которых становится трудно обеспечивать необходимую полосу пропускания в точке соединения резистора и схемы, что приводит к ухудшению качества импульсов.

В системе с последовательным согласованием выходной сигнал имеет следующие характеристики:

  • амплитуда импульсов - 4.5 В;
  • времена нарастания и спада одинаковы, и равны 1.5 нс;
  • искажение плоской вершины импульса - менее 10%;
  • спад вершины импульса - менее 5%.

При непосредственном подключении нагрузки 50 Ом времена нарастания и спада не ухудшаются. Для того, чтобы получить импульсы наилучшей формы, конденсатор 10 мкФ подключите как можно ближе к выводам V CC и GND микросхемы LTC3803, а выход соедините прямо с согласующим резистором, используя полосковую технологию. Волновое сопротивление, примерно равное 50 Ом, имеет печатный проводник шириной 2.5 мм на двухсторонней печатной плате толщиной 1.6 мм.

Материалы по теме

PMIC; преобразователь DC/DC; Uвх:5,7÷75В; Uвых:5,7÷75В; TSOT23-6

Поставщик Производитель Наименование Цена
ЭИК Linear Technology LTC3803ES6-5#TRMPBF 85 руб.
Триема Linear Technology LTC3803ES6#PBF 93 руб.
LifeElectronics LTC3803ES6-3 по запросу
ЭлектроПласт- Екатеринбург Linear Technology LTC3803HS6#PBF по запросу
  • Linear Technology вообще топовая фирма! Очень-очень жаль что их сожрала ширпотребовская Analog Devices. Ничего хорошего от этого не жди. Встречал я раньше статью англоязычного радиолюбителя. Он собрал генератор очень коротких импульсов шириной в единицы наносекунд и временами нарастания/спада в пикосекундах. На очень скоростном компараторе. Жаль не сохранил статью. И найти теперь никак не могу. Называлась что-то вроде "...real ultrafast comparator...", но как-то не так, не гуглится. Название компаратора забыл, и фирму его не помню. Компаратор на ebay тогда находил, около 500 руб стоил, в принципе бюджетно для действительно достойного прибора. У Linear Tecnology есть очень интересные микросхемки. Например LTC6957: время нарастания/спада 180/160 пс. Обалденно! Но сам построить измерительный прибор на подобной микрухе я вряд ли смогу.
  • Случаем не это на LT1721? Перестраиваемый 0-10нс.

И вот, наконец, дошли руки. После сборок мелких катушек решил замахнуться на новую схему, более серьезную и сложную в настройке и работе. Перейдем от слов к делу. Полная схема выглядит так:

Работает по принципу автогенератора. Прерыватель пинает драйвер UCC27425 и начинается процесс. Драйвер подает импульс на GDT (Gate Drive Transformator - дословно: трансформатор, управляющий затворами) с GDT идут 2 вторичные обмотки включенные в противофазе. Такое включение обеспечивает попеременное открытие транзисторов. Во время открытия транзистор прокачивает ток через себя и конденсатор 4,7 мкФ. В этот момент на катушке образуется разряд, и сигнал идет по ОС в драйвер. Драйвер меняет направление тока в GDT и транзисторы меняются (который был открытым - закрывается, а второй открывается). И этот процесс повторяется до тех пор, пока идет сигнал с прерывателя.

GDT лучше всего мотать на импортном кольце - Epcos N80. Обмотки мотаются в соотношении 1:1:1 или 1:2:2. В среднем порядка 7-8 витков, при желании можно рассчитать. Рассмотрим RD цепочку в затворах силовых транзисторов. Эта цепочка обеспечивает Dead Time (мертвое время). Это время когда оба транзистора закрыты. То есть один транзистор уже закрылся, а второй еще не успел открыться. Принцип такой: через резистор транзистор плавно открывается и через диод быстро разряжается. На осциллограмме выглядит примерно так:

Если не обеспечить dead time то может получиться так, что оба транзистора будут открыты и тогда обеспечен взрыв силовой.

Идем дальше. ОС (обратная связь) выполнена в данном случае в виде ТТ (трансформатора тока). ТТ наматывается на ферритовом кольце марки Epcos N80 не менее 50 витков. Через кольцо продергивается нижний конец вторичной обмотки, который заземляется. Таким образом высокий ток со вторичной обмотки превращается в достаточный потенциал на ТТ. Далее ток с ТТ идет на конденсатор (сглаживает помехи), диоды шоттки (пропускают только один полупериод) и светодиод (выполняет роль стабилитрона и визуализирует генерацию). Чтобы была генерация необходимо также соблюдать фразировку трансформатора. Если нет генерации или очень слабая - нужно просто перевернуть ТТ.

Рассмотрим отдельно прерыватель. С прерывателем конечно я попотел. Собрал штук 5 разных... Одни пучит от ВЧ тока, другие не работают как надо. Далее расскажу про все прерыватели, которые делал. Начну пожалуй с самого первого - на TL494 . Схема стандартная. Возможна независимая регулировка частоты и скважности. Схема ниже может генерировать от 0 до 800-900 Гц, если поставить вместо 1 мкФ конденсатор 4,7 мкФ. Скважность от 0 и до 50. То что нужно! Однако есть одно НО. Этот ШИМ контроллер очень чувствителен к ВЧ току и различным полям от катушки. В общем при подключении к катушке, прерыватель просто не работал, либо все по 0 либо CW режим. Экранирование частично помогло, но не решило проблему полностью.

Следущий прерыватель был собран на UC3843 очень часто встречается в ИИП, особенно АТХ, оттуда, собственно, его и взял. Схема тоже неплохая и не уступает TL494 по параметрам. Здесь возможна регулировка частоты от 0 до 1кГц и скважность от 0 до 100%. Меня это тоже устраивало. Но опять эти наводки с катушки все испортили. Здесь даже экранирование нисколько не помогло. Пришлось отказаться, хотя собрал добротно на плате...

Надумал вернуться к дубовым и надежным, но малофункциональным 555 . Решил начать с burst interrupter. Суть прерывателя заключается в том, что он прерывает сам себя. Одна микросхема (U1) задает частоту, другая (2) длительность, а третья (U3) время работы первых двух. Все бы ничего, если бы не маленькая длительность импульса с U2. Этот прерыватель заточен под DRSSTC и может работать с SSTC но мне это не понравилось- разряды тоненькие, но пушистые. Далее было несколько попыток увеличить длительность, но они не увенчались успехом.

Схемы генераторов на 555

Тогда решил изменить принципиально схему и сделать независимую длительность на конденсаторе, диоде и резисторе. Возможно многие посчитают эту схему абсурдной и глупой, но это работает. Принцип такой: сигнал на драйвер идет до тех пор пока конденсатор не зарядится (с этим думаю никто не поспорит). NE555 генерирует сигнал, он идет через резистор и конденсатор, при этом если сопротивление резистора 0 Ом, то идет только через конденсатор и длительность максимальна (на сколько хватает емкости) не зависимо от скважности генератора. Резистор ограничивает время заряда, т.е. чем больше сопротивление, тем меньшей времени будет идти импульс. На драйвер идет сигнал меньшей длительностью, но тоже частоты. Разряжается конденсатор быстро через резистор (который на массу идет 1к) и диод.

Плюсы и минусы

Плюсы : независимая от частоты регулировка скважности, SSTC никогда не уйдет в CW режим, если подгорит прерыватель.

Минусы : скважность нельзя увеличивать "бесконечно много", как например на UC3843 , она ограничена емкостью конденсатора и скважностью самого генератора (не может быть больше скважности генератора). Ток через конденсатор идет плавно.

На последнее не знаю как драйвер реагирует (плавную зарядку). С одной стороны драйвер также плавно может открывать транзисторы и они будут сильнее греться. С другой стороны UCC27425 - цифровая микросхема. Для нее существует только лог. 0 и лог. 1. Значит пока напряжение выше порогового - UCC работает, как только опустилось ниже минимального - не работает. В этом случае все работает в штатном режиме, и транзисторы открываются полностью.


Перейдем от теории к практике

Собирал генератор Тесла в корпус от АТХ. Конденсатор по питанию 1000 мкф 400в. Диодный мост из того же АТХ на 8А 600В. Перед мостом поставил резистор 10 Вт 4,7 Ом. Это обеспечивает плавный заряд конденсатора. Для питания драйвера поставил трансформатор 220-12В и еще стабилизатор с конденсатором 1800 мкФ.

Диодные мосты прикрутил на радиатор для удобства и для отвода тепла, хотя они почти не греются.

Прерыватель собрал почти навесом, взял кусок текстолита и канцелярским ножом вырезал дорожки.

Силовая была собрана на небольшом радиаторе с вентилятором, позже выяснилось, что этого радиатора вполне достаточно для охлаждения. Драйвер смонтировал над силовой через толстый кусок картона. Ниже фото почти собранной конструкции генератора Тесла, но находящейся на проверке, измерял температуру силовой при различных режимах (видно обычный комнатный термометр, прилепленный к силовой на термопласту).

Тороид катушки собран из гофрированной пластиковой трубы диаметром 50 мм и обклеенным алюминиевым скотчем. Сама вторичная обмотка намотана на 110 мм трубе высотой 20 см проводом 0,22 мм около 1000 витков. Первичная обмотка содержит аж 12 витков, сделал с запасом, дабы уменьшить ток через силовую часть. Делал с 6 витками в начале, результат почти одинаков, но думаю не стОит рисковать транзисторами ради пары лишних сантиметров разряда. Каркасом первички служит обычный цветочный горшок. С начала думал что не будет пробивать если вторичку обмотать скотчем, а первичку поверх скотча. Но увы, пробивало... В горшке конечно тоже пробивало, но здесь скотч помог решить проблему. В общем готовая конструкция выглядит так:

Ну и несколько фоток с разрядом

Теперь вроде бы все.

Ещё несколько советов: не пытайтесь сразу воткнуть в сеть катушку, не факт что она сразу заработает. Постоянно следите за температурой силовой, при перегреве может бабахнуть. Не мотайте слишком высокочастотные вторички, транзисторы 50b60 могут работать максимум на 150 кГц по даташиту, на самом деле немного больше. Проверяйте прерыватели, от них зависит жизнь катушки. Найдите максимальную частоту и скважность, при которой температура силовой стабильная длительное время. Слишком большой тороид может тоже вывести из строя силовую.

Видео работы SSTC

P.S. Транзисторы силовые использовал IRGP50B60PD1PBF. Файлы проекта . Удачи, с вами был [)еНиС !

Обсудить статью ТЕСЛА ГЕНЕРАТОР

Генераторы импульсов - это устройства, которые способны создавать волны определенной формы. Тактовая частота в данном случае зависит от многих факторов. Основным предназначением генераторов принято считать синхронизацию процессов у электроприборов. Таким образом, у пользователя есть возможность настраивать различную цифровую технику.

Как пример можно привести часы, а также таймеры. Основным элементом устройств данного типа принято считать адаптер. Дополнительно в генераторы устанавливаются конденсаторы и резисторы вместе с диодами. К основным параметрам устройств можно отнести показатель возбуждения колебаний и отрицательного сопротивления.

Генераторы с инверторами

Сделать генератор импульсов своими руками с инверторами можно и в домашних условиях. Для этого адаптер потребуется бесконденсаторного типа. Резисторы лучше всего использовать именно полевые. Параметр передачи импульса у них находится на довольно высоком уровне. Конденсаторы к устройству необходимо подбирать исходя из мощности адаптера. Если его выходное напряжение составляет 2 В, то минимальная должна находиться на уровне 4 пФ. Дополнительно важно следить за параметром отрицательного сопротивления. В среднем он обязан колебаться в районе 8 Ом.

Модель прямоугольных импульсов с регулятором

На сегодняшний день генератор прямоугольных импульсов с регуляторами является довольно распространенным. Для того чтобы у пользователя была возможность настраивать предельную частоту устройства, необходимо использовать модулятор. На рынке производителями они представлены поворотного и кнопочного типа. В данном случае лучше всего остановиться на первом варианте. Все это позволит более тонко проводить настройку и не бояться за сбой в системе.

Устанавливается модулятор в генератор прямоугольных импульсов непосредственно на адаптер. При этом пайку необходимо производить очень аккуратно. В первую очередь следует хорошо прочистить все контакты. Если рассматривать бесконденсаторные адаптеры, то у них выходы находятся с верхней стороны. Дополнительно существуют аналоговые адаптеры, которые часто выпускаются с защитной крышкой. В этой ситуации ее необходимо удалить.

Для того чтобы у устройства была высокая пропускная способность, необходимо резисторы устанавливать попарно. Параметр возбуждения колебаний в данном случае обязан находиться на уровне Как основную проблему генератор прямоугольных импульсов (схема показана ниже) имеет резкое повышение рабочей температуры. В данном случае следует проверить отрицательное сопротивление бесконденсаторного адаптера.

Генератор перекрывающих импульсов

Чтобы сделать генератор импульсов своими руками, адаптер лучше всего использовать аналогового вида. Регуляторы в данном случае применять не обязательно. Связано это с тем, что уровень отрицательного сопротивления может превысить 5 Ом. В результате на резисторы оказывается довольно большая нагрузка. Конденсаторы к устройству подбираются с емкостью не менее 4 Ом. В свою очередь адаптер к ним подсоединяется только выходными контактами. Как основную проблему генератор импульсов имеет асимметричность колебаний, которая возникает вследствие перегрузки резисторов.

Устройство с симметричными импульсами

Сделать простой генератор импульсов такого типа можно только с использованием инверторов. Адаптер в такой ситуации лучше всего подбирать аналогового типа. Стоит он на рынке намного меньше, чем бесконденсаторная модификация. Дополнительно важно обращать внимание на тип резисторов. Многие специалисты для генератора советуют подбирать кварцевые модели. Однако пропускная способность у них довольно низкая. В результате параметр возбуждения колебаний никогда не превысит 4 мс. Плюс к этому добавляется риск перегрева адаптера.

Учитывая все вышесказанное, целесообразнее использовать полевые резисторы. в данном случае будет зависеть от их расположения на плате. Если выбирать вариант, когда они устанавливаются перед адаптером, в этом случае показатель возбуждения колебаний может дойти до 5 мс. В противной ситуации на хорошие результаты можно не рассчитывать. Проверить генератор импульсов на работоспособность можно просто подсоединив блок питания на 20 В. В результате уровень отрицательного сопротивления обязан находиться в районе 3 Ом.

Чтобы риск перегрева был минимальным, дополнительно важно использовать только емкостные конденсаторы. Регулятор в такое устройство устанавливать можно. Если рассматривать поворотные модификации, то как вариант подойдет модулятор серии ППР2. По своим характеристикам он на сегодняшний день является довольно надежным.

Генератор с триггером

Триггером называют устройство, которое отвечает за передачу сигнала. На сегодняшний день они продаются однонаправленные или двухнаправленные. Для генератора подходит только первый вариант. Устанавливается вышеуказанный элемент возле адаптера. При этом пайку необходимо проделывать только после тщательной зачистки всех контактов.

Непосредственно адаптер можно выбрать даже аналогового типа. Нагрузка в данном случае будет небольшой, а уровень отрицательного сопротивления при удачной сборке не превысит 5 Ом. Параметр возбуждения колебаний с триггером в среднем составляет 5 мс. Основную проблему генератор импульсов имеет такую: повышенная чувствительность. В результате с блоком питания выше 20 В указанные устройства работать не способны.

повышенной нагрузки?

Обратим внимание на микросхемы. Генераторы импульсов указанного типа подразумевают использование мощного индуктора. Дополнительно следует подбирать только аналоговый адаптер. В данном случае необходимо добиться высокой пропускной способности системы. Для этого конденсаторы применяются только емкостного типа. Как минимум отрицательное сопротивление они должны быть способны выдерживать на уровне 5 Ом.

Резисторы для устройства подходят самые разнообразные. Если выбирать их закрытого типа, то необходимо предусмотреть для них раздельный контакт. Если все же остановиться на полевых резисторах, то изменение фазы в данном случае будет происходить довольно долго. Тиристоры для таких устройств практически бесполезны.

Модели с кварцевой стабилизацией

Схема генератора импульсов данного типа предусматривает использование только бесконденсаторного адаптера. Все это необходимо для того, чтобы показатель возбуждения колебаний был как минимум на уровне 4 мс. Все это позволит также сократить термальные потери. Конденсаторы для устройства подбираются исходя из уровня отрицательного сопротивления. Дополнительно необходимо учитывать тип блока питания. Если рассматривать импульсные модели, то у них уровень выходного тока в среднем находится на отметке 30 В. Все это в конечном счете может привести к перегреву конденсаторов.

Чтобы избежать таких проблем, многие специалисты советуют устанавливать стабилитроны. Припаиваются они непосредственно на адаптер. Для этого необходимо прочистить все контакты и проверить напряжение катода. Вспомогательные адаптеры для таких генераторов также используются. В этой ситуации они играют роль коммутируемого трансивера. В результате параметр возбуждения колебаний повышается до 6 мс.

Генераторы с конденсаторами РР2

Складывается генератор высоковольтных импульсов с конденсаторами данного типа довольно просто. На рынке найти элементы для таких устройств не составляет никаких проблем. Однако важно подобрать качественную микросхему. Многие с этой целью приобретают многоканальные модификации. Однако стоят они в магазине довольно дорого по сравнению с обычными типами.

Транзисторы для генераторов подходят больше всего однопереходные. В данном случае параметр отрицательного сопротивления не должен превышать 7 Ом. В такой ситуации можно надеяться на стабильность работы системы. Чтобы повысить чувствительность устройства, многие советуют применять стабилитроны. При этом триггеры используются крайне редко. Связано это с тем, что пропускная способность модели значительно снижается. Основной проблемой конденсаторов принято считать усиление предельной частоты.

В результате смена фазы происходит с большим отрывом. Чтобы наладить процесс должным образом, необходимо вначале работы настроить адаптер. Если уровень отрицательного сопротивления находится на отметке 5 Ом, то предельная частота устройства должна составлять примерно 40 Гц. В результате нагрузка с резисторов снимается.

Модели с конденсаторами РР5

Генератор высоковольтных импульсов с указанными конденсаторами можно встретить довольно часто. При этом использоваться он способен даже с блоками питания на 15 В. Пропускная способность его зависит от типа адаптера. В данном случае важно определиться с резисторами. Если подбирать полевые модели, то адаптер целесообразнее устанавливать именно бесконденсаторного типа. В том случае параметр отрицательного сопротивления будет находиться в районе 3 Ом.

Стабилитроны в данном случае используются довольно часто. Связано это с резким понижением уровня предельной частоты. Для того чтобы ее выровнять, стабилитроны подходят идеально. Устанавливаются они, как правило, возле выходного порта. В свою очередь, резисторы лучше всего припаивать возле адаптера. Показатель колебательного возбуждения зависит от емкости конденсаторов. Рассматривая модели на 3 пФ, отметим, что вышеуказанный параметр никогда не превысит 6 мс.

Основные проблемы генератора

Основной проблемой устройств с конденсаторами РР5 принято считать повышенную чувствительность. При этом термальные показатели также находятся на невысоком уровне. За счет этого часто возникает потребность в использовании триггера. Однако в данном случае необходимо все же замерить показатель выходного напряжения. Если он при блоке в 20 В превышает 15 В, то триггер способен значительно улучшить работу системы.

Устройства на регуляторах МКМ25

Схема генератора импульсов с данным регулятором включает в себя резисторы только закрытого типа. При этом микросхемы можно использовать даже серии ППР1. В данном случае конденсаторов требуется только два. Уровень отрицательного сопротивления напрямую зависит от проводимости элементов. Если емкость конденсаторов составляет менее 4 пФ, то отрицательное сопротивление может повыситься даже до 5 Ом.

Чтобы решить данную проблему, необходимо использовать стабилитроны. Регулятор в данном случае устанавливается на генератор импульсов возле аналогового адаптера. Выходные контакты при этом необходимо тщательно зачистить. Также следует проверить пороговое напряжение самого катода. Если оно превышает 5 В, то подсоединять регулируемый генератор импульсов можно на два контакта.

 


Читайте:



Как подключить usb к штатной кассетной магнитоле

Как подключить usb к штатной кассетной магнитоле

Конечно, можно пойти в магазин, отстегнуть порядка 50 долларов, или больше, купить новую и не морочить себе голову. Но это же не наш метод! Итак,...

Схема простого вольтметр-индикатора бортовой сети автомобиля Светодиодный индикатор бортового напряжения автомобиля

Схема простого вольтметр-индикатора бортовой сети автомобиля Светодиодный индикатор бортового напряжения автомобиля

Прибор подключается к бортовой сети автомобиля и предназначен для оперативного определения ее состояния по четырем светодиодам. Которые индицируют...

Автомобильный усилитель – экономные варианты создания звука в салоне Как сделать автомобильный усилитель

Автомобильный усилитель – экономные варианты создания звука в салоне Как сделать автомобильный усилитель

Здравствуйте! Хочу представить вашему вниманию схему, фотографии и печатные платы автомобильного усилителя. Схемы эти легко встретить в интернете....

Щелкаем реле правильно: коммутация мощных нагрузок Реле разомкнутое

Щелкаем реле правильно: коммутация мощных нагрузок Реле разомкнутое

Реле – это переключатель. Причем не совсем обычный. Когда в подъезде лампочка загорается от звука шагов, это не волшебство, это работает реле. В...