Главная - Устройство
Делаем короб для сабвуфера своими руками: пошаговая инструкция. Делаем автомобильный сабвуфер самостоятельно Как узнать, какие автомобильные динамики вам подойдут

Один из наиболее эффективных способов, который необходимо использовать для богатого и качественного баса – это добавление к уже существующей акустической системе сабвуфера. Именно сабвуфер и добавление фазоинвертора для сабвуфера позволяют значительно расширить и сделать богаче низкие частоты. В конечном итоге, это поможет не просто улучшить качество звучания звука, но и делать это вне зависимости от выбранной для прослушивания музыки.

На данный момент существует два варианта басов – гулкий бас и бас плотный. Выбирать устройство фазоинвертора для сабвуфера необходимо на основании предпочтений в музыке. На протяжении долгого времени на большом количестве форумов и Интернет-ресурсов обсуждались вопросы: что лучше использовать фазоинвертор для сабвуфера или закрытый корпус?

Одни уверены в том, что вентилируемые сабвуферы, или фазоинверторы необходимы только для того, чтобы улучшать звуковые эффекты, поэтому для музыки они годятся. Другие же уверены в том, что закрытые боксы отличаются большей музыкальностью, хотя им не хватает басов и глубины.

Оба вида сабвуферов – фазоинвертор и закрытый корпус, отличаются своими достоинствами и недостатками. Поэтому необходимо сделать выбор на основании плюсов и личных предпочтений в музыкальных жанрах.

Определение и особенности

Фазоинвертор – это тип акустической системы и ее оформление, которое объединяет в себе такие качества:

  1. Высокое качество звука при воспроизведении.
  2. Внушительная громкость.
  3. Простота в эксплуатации и настройке фазоинвертора вне зависимости от модели и места расположения.
  4. Небольшие размеры.

Принцип работы фазоинвертора

Фазоинвертор, как корпус с некоторыми отверстиями, позволяет воспроизводить действительно гулкие и громкие басы с хорошими, высокими энергическими показателями реверберации, чего не скажешь о закрытых боксах. Достигается такое высокое качество басов за счет негерметичного корпуса, а также отсутствия каких-либо средств дополнительной обработки звука.

Также в фазоинверторе отсутствует цифровой процессор, а это значит, что единственная особенность этой конструкции – это как раз использование негерметичного корпуса. В большинстве случаев негерметичность достигается тем, что в корпусе делается небольшое отверстие. В этом заключается главное отличие фазоинвертора от закрытых корпусов аудиосистем для транспортного средства.

Пускай у фазоинвертора очень простой и даже немного примитивный дизайн и внешний вид, однако эта простота никак не отображается и не связана с простотой настройки аппарата. Другими словами, в некоторых случаях бывает достаточно сложно правильно настроить фазоинвертор на сабвуфер для того, чтобы получить качественный, сбалансированный и красивый звук при проигрывании музыкальных композиций на выходе.

Главная хитрость фазоинвертора для сабвуфера и его настройки заключается в правильно выбранных габаритах корпусов, а также в правильном подборе отверстий в акустической системе для машины.

Вентиляционные отверстия, на основании использования которых и строится вся работа фазоинвертора, занимаются перенаправлением звуков из задней области конуса, одновременно с этим добавляя к этим звукам тот звук, который исходит от передней части конуса. На основании сочетания этих двух источников звучания при воспроизведении и получается сильно увеличить басы и их громкость.

Читайте также

Характеристики JBL bandpass GT-12BP

Подобная схема примечательна и полезна тем, что благодаря ее действию можно использовать очень скромный как по габаритам, так и по показателям внешний усилитель для того, чтобы на выходе получились отличные и качественные результаты звучания.

Еще одно интересное преимущество фазоинверторов, которое будет полезно потребителю, заключается в продолжительном сроке эксплуатации сабвуфера. Это происходит за счет потоков воздуха, охлаждающих динамики.

Основные преимущества и недостатки фазоинверторов

К основным преимуществам фазоинверторов для сабвуферов в транспортных средствах можно отнести следующие:

  1. Уменьшение уровня и показателей вибрации и искажений диффузора.
  2. Более качественный, четкий и приятный для человеческого восприятия звук. Правда, относится это не к каждому жанру и типу композиций, а к определенным разновидностям музыки. Из-за воздушных потоков, поступающих прямо в отверстие вентиляции, звук будет напоминать небольшой, едва слышимый свист. Этот свист очень похож на тот, который получается, когда человек дует на горлышко пустой бутылки.

К основным преимуществам фазоинверторов для сабвуферов в автомобилях можно отнести следующие:

  1. Звуки при воспроизведении композиции, которые получаются при помощи вентиляционных каналов, могут стать причиной причинения вреда, а не пользы, но это относится не ко всем видам музыки, а только к некоторым из них. Как было отмечено выше, фазоинверторы – это тот комплекс в общей акустической системе транспортного средства, который не сможет подойти под абсолютно любую музыку.
  2. Фазоинвертор — это достаточно чувствительный вид корпуса, а в особенности его чувствительность распространяется на изменения в климате. Больше всего работа фазоинвертора зависит от таких климатических показателей, как температурные показатели, а также уровень и процент влажности.
  3. Фазоинвертор и тип корпуса, как ни странно, способствует физическому переутомлению человека.
  4. Из-за постоянного высокого давления внутри корпуса фазоинвертора система должна быть очень прочной. Все это говорит о том, что ее сложнее делать и продавать, а себестоимость входит в итоговый ценник.

Что можно сказать о фазоинверторе?

Фазоинвертор в сабвуфере отличается расплывчатым басом, что понравится далеко не всем. С другой же стороны, если нужно, чтобы басы уходили «в землю», именно такая система акустики подойдет просто идеально.

Закономерным финалом саги о фазоинверторе будут практические аспекты его воплощения в жизнь. Ключевым элементом здесь становится именно труба, она же - тоннель, она же в результате рабской транслитерации с английского - порт. Именно она, труба, позволит реализовать на практике два главных параметра, определяющие акустический облик задуманного фазоинвертора: объём корпуса и частота его настройки. Эти две величины, одна в литрах, вторая - в герцах, становятся результатом либо самостоятельного расчёта, либо следования ранее сделанным калькуляциям. Их источником могут быть изготовители динамика, наши тесты или же советы специалистов, основанные на их практике. Во всех трёх случаях бывает, что даются готовые размеры тоннеля, обеспечивающие настройку известного объёма на нужную частоту, но, во-первых, не каждый раз, а во-вторых, слепое копирование не всегда возможно и всегда непохвально. Так что более общей и гораздо более продуктивной будет такая постановка задачи: известны объём и частота, а вопрос об их физической, в материале, реализации станем решать самодеятельно. Часть истории будет организована по принципу вопросов и ответов: номенклатура вопросов известна, в редакционной почте они повторяются с регулярностью, дающей повод для статистических выкладок, которые так любит наш тестовый департамент. Не стану отнимать у них любимую игрушку, у нас - свои. Итак, что вначале, рассчитываем тоннель или покупаем трубу, которой этим тоннелем предстоит стать? По идее надо вначале купить - трубы бывают не любого диаметра, а из некоторого ряда значений, если брать готовые, а не накручивать самому из бумаги на клею, как пионер из кружка юного космонавта. Но начать придётся всё же с хотя бы грубой прикидки, и дело здесь в том, что...

Толщина имеет значение

Если тоннель действительно труба (есть ведь и варианты), какой она должна быть в диаметре? Самый общий и самый грубый ответ: чем больше, тем лучше. Совет действительно радикален и может вызвать протестную реакцию: а если я возьму и сделаю тоннель диаметром вдвое больше динамика? Не возьмете и не сделаете, как бы ни старались, об этом больше ста лет назад позаботился некто Герман Гельмгольц, резонатором имени которого фазоинвертор и является, а позже - создатели автомобилей, сделавшие их по габаритам меньше существовавших в то время паровозов. Итак, по порядку, почему больше и почему что-то этот процесс остановит.

Во время работы вблизи частоты настройки, где, собственно, и выполняет свои функции тоннель фазоинвертора, добавляя от себя к звуковым волнам, порождаемым колебаниями диффузора, внутри тоннеля движется воздух. Движется колебательно, туда-сюда. Объём движущегося воздуха - точно такой же, какой во время каждого колебания приводится в движение диффузором, он равен произведению площади диффузора на его ход. Для тоннеля этот объём - произведение площади сечения на ход воздуха внутри тоннеля. Площадь сечения реально всегда меньше площади диффузора (если кто ещё не отказался от угрозы сделать такой же, а то и больше, скоро никуда не денутся и откажутся), и, чтобы переместить такой же объём, воздуху надо двигаться быстрее, скорость в тоннеле с уменьшением диаметра возрастает пропорционально уменьшению площади его сечения. Чем это плохо? Всем сразу. Прежде всего тем, что модель резонатора Гельмгольца, на которой всё основано, предполагает, что потери энергии на трение воздуха о стенки тоннеля отсутствует. Это, разумеется, идеальный случай, но чем дальше мы от него отойдём, тем меньше работа фазоинвертора будет походить на то, чего мы от него ожидаем. А потери на трение в тоннеле тем выше, чем больше скорость воздуха внутри. Теоретически формула, да и несложная программа, на ней основанная, этих потерь не учитывает и безропотно выдаст вам расчётную длину тоннеля при диаметре хоть в палец, но работать такой фазоинвертор не будет, всё умрёт в завихрениях воздуха, пытающегося стремительно летать по тесному тоннелю взад-вперёд. Текст когда-то виденного мной агитационного плаката ГАИ «Скорость это смерть» к движению воздуха в тоннеле подходит безусловно, если смерть отнести к эффективности фазоинвертора.

Впрочем, намного раньше, чем фазик погибнет как средство звуковоспроизведения, он станет источником звуков, для которых не предназначен, вихри, возникающие при излишне высокой скорости движения воздуха, создадут струйные шумы, нарушающие гармонию басовых звуков самым бессовестным и неэстетичным образом.

Что следует принять за минимальное значение площади сечения тоннеля? В разных источниках вы найдёте разные рекомендации, далеко не все из них авторами были когда-либо опробованы хотя бы путём вычислительного эксперимента, о других уж не говорим. Как правило, в такие рекомендации закладываются две величины: диаметр диффузора и максимальная величина его хода, то самое Xmax. Это разумно и логично, но в полной мере относится лишь к работе сабвуфера на предельном режиме, когда о качестве звучания говорить уже немного поздно. Основываясь на многочисленных практических наблюдениях, можно взять на вооружение куда более простое правило, оно небезупречно и не совсем универсально, но работает: для 8-дюймовой головки тоннель должен быть не меньше 5 см в диаметре, для 10-дюймовой -

7 см, для 12-ти и больше - 10 см. Можно ли больше? Даже нужно, но вот именно сейчас нас кое-что остановит. А именно - длина тоннеля. Дело в том, что...

Длина имеет значение

Как и было сказано, её скомандует великий Герман фон Гельмгольц. Вот он, у доски в Гейдельбергском университете, а на доске - та самая формула. Ну ладно, в этот раз её написал я, но придумал - он и написал бы точно так же. Эта немудрёная, поскольку выведена для идеального случая, зависимость показывает, какова будет частота резонанса некоей полости (нам привычнее ящик, хотя Герман фон делал эдакие пузыри с трубами-хвостиками) в зависимости от объёма V, длины L и площади сечения хвостика. Обратите внимание: параметров динамика здесь нет, и было бы странно, если бы они были. В любом случае полезно запомнить и никогда не поддаваться на провокации: настройка фазоинвертора полностью и исчерпывающе определяется размерами ящика и характеристиками тоннеля, соединяющего этот ящик с окружающей средой. Помимо этого в формулу входят только скорость звука в атмосфере планеты Земля, обозначенная «с», и число «пи», не зависящее даже от планеты.

Для практических целей, а именно - вычисления длины тоннеля по известным данным, формулу легко преобразовать, вспомнив родную школу, а константы подставить в виде чисел. Это делали многие. Многие же публиковали результаты этого волнующего процесса, и автору немного удивительно, как можно было зрелищно обделаться при операции с тремя-четырьмя числами. В общем, треть опубликованных на бумаге и в Сети преобразованных формул непостижимым образом являются ахинеей. Правильная приводится здесь, если подставлять величины в показанных чёрным единицах.

Эта же формула плюс некоторые поправки заложена и во все известные программы по расчёту фазоинверторов, но прямо сейчас формула для нас удобнее, всё на виду. Смотрите: что будет, если вместо минималистского тоннеля поставить другой, попросторнее (и потому получше)? Потребная длина возрастёт пропорционально квадрату диаметра (или пропорционально площади, но ведь мы трубу-то собрались по диаметру покупать, по-другому не продают). Перешли от 5-сантиметровой трубы к 7-сантиметровой, это к примеру, длина при той же настройке понадобится вдвое больше. Перешли на 10 см - вчетверо. Беда? Пока - полбеды. Дело в том, что...

Калибр имеет значение

Беда сейчас будет. Ещё раз глядим на формулу, на этот раз - в знаменатель, фокусируйте зрение. При всех прочих равных длина тоннеля будет тем больше, чем меньше объём ящика. Если для того, чтобы настроить на 30 Гц 100-литровый объём, имея в распоряжении 100-миллиметровую сантехническую трубу, надо открыжить и вклеить в ящик отрезок говнопровода протяжённостью 25 сантиметров, то при объёме ящика 50 л это будет полметра (что уже не меньше, чем полбеды), и при довольно распространённых 25 л тоннель такой толщины должен будет иметь метровую длину. Это уже беда, без вариантов.

В наших, практических условиях объём ящика в первую очередь определяется параметрами динамика, и в силу причин, читателям этой серии уже хорошо известных, для головок калибра 8 дюймов оптимальный объём редко превышает 20 л, для «десяток» - 30 - 40, лишь когда дело доходит до 12-дюймового калибра, мы начинаем иметь дело с объёмами порядка 50 - 60 л, и то не всегда.

Вот и получается какой-то парад суверенитетов: частота настройки ФИ определяется тем басом, который мы от него хотим получить, будь он на «восьмёрке» или на «пятнашке» - не важно. А частота настройки ящика опять не зависит от динамика, чем меньше объём, тем длиннее подавай тоннель. Итог парада: как мы неоднократно замечали в тестах малокалиберных сабвуферов, желательный и многообещающий вариант оформления в ФИ физически невозможно (или затруднительно) реализовать. Даже если не жалко места в багажнике, нельзя объём ящика ФИ делать больше оптимального, а оптимальный нередко оказывается настолько мал, что настроить его на инвариантную к прочим факторам частоту 30 - 40 Гц немыслимо. Вот пример из недавнего теста 10-дюймовых сабвуферных головок («А3» №11/2006): если взять за аксиому диаметр трубы 7 см, то для того, чтобы сделать фазоинвертор на головке Boston, понадобился бы её кусок длиной 50 см, для Rainbow - 70 см, А для Rockford Fosgate и Lightning Audio - около метра. Сравните с рекомендациями в тесте этого номера, относящимися к 15-дюймовым головкам: ни у одной таких проблем не отмечено. Почему? Не из-за динамика, как такового, а из-за исходного объёма, выбранного по параметрам динамика. Что делать? Встречать беду во всеоружии. Оружие нам выковали поколения специалистов (и не только). Знаете, в чём тут дело?

Форма имеет значение

Вы едва ли могли не заметить: я очень люблю копаться в патентах, поскольку считаю, пусть дорога от изобретения к реальной жизни не столь уж коротка, патент - отражение мысли в виде вектора, то есть - с учётом направления. Большинство новаций, предложенных (и неуклонно предлагаемых) неутомимыми умами в отношении фазоинвертора, сконцентрировано на борьбе с двумя мешающими факторами: длина тоннеля, когда его сечение велико, и струйные шумы, когда его сечение, стремясь сократить длину, попытались уменьшить. Первое, простейшее решение, о допустимости которого нас спрашивают в редакционной почте раз по пять в месяц: можно ли тоннель поместить не внутрь ящика, а снаружи? Вот ответ, окончательный, фактический и настоящий, как бумага на квартиру профессора Преображенского: можно. Хоть частично, хоть целиком, внутрь ящика тоннель запихнули исключительно из эстетических соображений, у фон Гельмгольца он торчал снаружи, и ничего, он это пережил. Да и современность наша даёт примеры: вот, скажем, ветераны car audio не могут не помнить (многие, честно говоря, не могут забыть) «басовые трубы» фирмы SAS Bazooka. Они ведь начались с патента на сабвуфер, который удобно поместить за сиденьем грузовика - любимого транспорта американцев. Для этого изобретатель протянул трубу фазоинвертора вдоль корпуса снаружи, заодно уж придав её распластанную по поверхности цилиндрического корпуса форму. Это - один пример, есть другой: некоторые фирмы, выпускающие встроенные сабвуферы для домашних кинотеатров, выводят наружу трубу-тоннель полосового сабвуфера-бандпасса. Тип сабвуфера в данном случае значения не имеет: это тот же резонатор имени сами знаете кого. Ещё одно решение тоже, судя по письмам, ищут, но опасаются. «Можно ли гнуть тоннель?» Ответ - в стиле Филиппа Филипповича и очевиден. Иначе не выпускали бы сразу несколько компаний (DLS, JL Audio, Autoleads, etc. etc.) гибкие трубы специально для этой цели. А в области патентной документации есть даже интересная подсказка, как можно эту задачу решить не без изящества и материальной экономии: была в своё время предложена конструкция модельного тоннеля, который бы собирался из типовых элементов в любой желаемой форме, иллюстрация поведает об остальном. От себя добавлю: большая часть изображённых в патенте деталей трогательно напоминает номенклатуру элементов канализационных сетей местного значения, что и является практическим рецептом внедрения интеллектуального эксцесса американского изобретателя.

Борясь с неуместной длиной тоннеля, часто идут по пути строительства так называемых «щелевых портов», их достоинство - в конструктивной интеграции с корпусом, что позволяет, при известном воображении, сделать тоннель довольно протяжённым, на прилагаемой схеме - сразу несколько вариантов, которым вопрос, разумеется, далеко не исчерпывается (три верхних эскиза принадлежат перу известного хай-эндщика Александра Клячина, остальное было делом техники).

Недостаток же щелей - в трудности подгонки длины, это не сантехнический ПВХ - махнул пилой, и дело в шляпе. Но есть решения и здесь: не так давно один из героев рубрики «Своя игра» пермяк Александр Султанбеков (не грех лишний раз напомнить стране имена её героев) продемонстрировал на практике, как можно настраивать щелевой порт, изменяя его сечение при неизменной длине, он это делал, укладывая внутрь фанерные проставки, как показано на фото где-то поблизости, поищите.

В сворачивании тоннеля фазоинвертора некоторые светлые умы дошли до крайностей: один светлый предложил, например, свернуть тоннель в виде спирали вокруг цилиндрического корпуса громкоговорителя, другой на хитрую формулу Гельмгольца ответил тоннелем-винтом, такая концепция нам здесь, в России, знакома...

Но вообще-то все эти решения (даже с винтом) - лобовые, здесь тоннель неизменной длины просто приделывается или складывается так, чтобы не мешал. Известны (и даже продаются в товарных количествах) реализации другого принципа. Здесь дело вот в чём.

Сечение имеет значение

Не площадь, как таковая, а характер её изменения по длине тоннеля. До сих пор мы, ведомые учением фон Гельмгольца в его самой простой, школьной форме, считали непременным, что поперечное сечение тоннеля постоянно. А нашлись люди, которые это условие нарушили и даже нажили на этом денег.

Опытные читатели помнят, например, статью нашего итальянского коллеги профессора Матарацци, где он предлагает эффективные решения по сокращению длины тоннеля путём придания ему конической или дважды конической, как песочные часы, формы. В «А3» №10/2001 расчёты по программам профессора приведены в виде таблиц, а сами программы сеньор недавно по нашей просьбе нашёл и прислал. Ко времени выхода этого номера из печати мы их выложим на сайт в разделе «Приложения». Правда, исходный код рассеянный профессор потерял безвозвратно, так что программки остаются на итальянском, если кто знает, как перевести, не имея кода, примем помощь с признательностью.

А пока отметим: в своих изысканиях профессор и не первый, и не единственный. На этом направлении происходили даже целые трагедии. Давние читатели журнала, возможно, помнят заметку в «А3» №2/2003 о судебном иске по поводу тоннеля фазоинвертора, не столь давним напомню: корпорация Bose усмотрела, что другая корпорация, JBL, использовав в своих колонках тоннели фазоинвертора с криволинейной образующей, названные Linear-A, тяжко посягнула на интеллектуальную собственность Bose Corp. В доказательство был приведен патент США, где упоминалось, в числе прочего, что неплохо было бы тоннель сделать с эллиптической образующей, он тогда будет и короче, и тише с точки зрения струйных шумов. Напрасно JBL пыталась втолковать суду, что у Bose эллипс, а у JBL - экспонента. Суд пояснил, что эллипсы-шмеллипсы - дело десятое, а колонок продали много, бухгалтерия Bose посчитала: нажива JBL составила 5676718 долларов и 32 цента, что и предлагалось внести в кассу обиженной стороны. Занесли как миленькие, включая медяки, а во всех колонках тоннели поменялись на другие, FreeFlow, типа - улучшенная модель. Вот как бывает...

Уход от цилиндра как формы тоннеля предлагали очень и очень многие. Кто - в стиле Матарацци с вариациями, кто - в скромном, локальном масштабе, ограничиваясь приданием криволинейных обводов концам цилиндрического тоннеля с целью снижения струйных шумов от завихрений. Наиболее же радикальное средство борьбы и с длиной, и с шумами не только придумал, но и эксклюзивно пользуется им уже не один год Мэттью Полк, основатель компании своего имени. Суть устройства под названием PowerPort такова: часть функций тоннеля берёт на себя одна или две, на каждом конце трубы, кольцевая щель между стенкой ящика и поставленным на строго рассчитанном расстоянии от неё «грибком», впрочем, на рисунке всё видно. Такими тоннелями снабжаются практически все домашние громкоговорители Polk Audio. И ежели только кто покусится, плакали его 32 цента плюс ещё кое-что. Для себя же, любимых, никто не запретит такую штуку попробовать, тем более что когда-то давно Полк выложил на свой корпоративный сайт таблицу в «Экселе», по которой можно всё рассчитать, я её тогда же с этого сайта попёр (получив на это позже, задним числом, благословение автора - я же не с целью наживы) и даже перевёл сопроводительные инструкции на великий и могучий, это всё лежит у нас на сайте.

A propos, и труды профессора Матарацци, и революционная разработка Мэттью Полка напоминают нам вот о чём: гимназическая формула Гельмгольца, помимо прочего, не учитывает очень существенный для практики эффект: в огромном большинстве случаев (практически - всегда) один из концов тоннеля прилегает к стенке корпуса сабвуфера, это касается как круглых труб, отпиленных заподлицо со стенкой, так и труб, снабжённых аэродинамической законцовкой, а в ещё большей степени - щелевых портов, прилепившихся к стенке. Близость стенки создаёт концевой эффект, напоминающий то, чего намеренно добивался автор PowerPort - виртуального удлинения тоннеля. Поэтому-то к формуле, непосредственно произведенной из трудов фон Гельмгольца современные прикладные спецы рекомендуют вводить поправку, чисто эмпирическую, но оттого не менее нужную, она выделена красным, чтобы было ясно, где классик XIX века, а где - практика XX.

А вообще-то, друзья дорогие, пора браться за дело, не век же в бумажках копаться. Дело-то как раз в этом...

К вопросу о толщине: проталкивая тот же объём воздуха через более тесный тоннель, его придётся разгонять до более высокой скорости. А «скорость - это смерть»

Гельмгольц написал бы свою формулу точно так же, просто в тот момент не было фотографа

Окончательная и фактическая формула, заменяющая компьютерную программу. Она правильная, проверили неоднократно. Смысл выделенного красным «хвостика» будет объяснен в тексте

Может ли тоннель находиться снаружи ящика? Да целая фирма на этом построила свой бизнес, патент на удобный для размещения сабвуфер был растиражирован стонями тысяч басовых труб SAS Bazooka. А производители встроенных сабвуферов для домашних театров вообще не парятся...

Можно ли тоннель оставить внутри, но согнуть как удобнее? Вот вам ответ

Экзотические, отчаянные решения: свернуть тоннель спиралью или винтом

Щелевой тоннель интегрирован с ящиком, от этого его можно сделать длиннее обычного, «вставного», подгонять длину, правда, гораздо труднее...

Значит, надо подгонять не длину, а сечение: вот как это делал один житель столицы Пермского края

Уход от цилиндрической формы тоннеля предлагался и для сокращения его длины, и в виде локальной «аэродинамической обработки», для снижения струйных шумов

Самое эффектное решение в этой области: PowerPort Мэттью Полка. Изобретение не осталось на бумаге, оно - составная часть почти всей акустики Polk Audio

Подготовлено по материалам журнала "Автозвук", февраль 2007 г. www.avtozvuk.com

«Колонкостроительством» я начал заниматься в начале 80-х. И если вначале это был просто «динамик в ящике», то потом, естественно началось изучение влияния параметров ящика (и фазоинвертора) на звучание динамика.

Есть много «сабвуферостроителей», но для подавляющего большинства это просто «динамик в ящике», и чем больше, тем лучше. Да, в какой-то степени, для закрытого ящика это правильно. Но для фазоинвертора…

Фазоинвертор требует тщательной настройки. А что мы видим на практике? В качестве фазоинвертора люди ставят канализационные трубы произвольной длины, делают «щелевые фазоинверторы» по образу: «по таким размерам Вася делал», ставя при этом другой динамик. Тот, кто представляет это – ограничивается изготовлением закрытого ящика (и правильно делает!).

Конечно, есть замечательные программы моделирования, например, JBL SpeakerShop. Но все они требуют введения кучи исходных параметров. И даже зная их, расхождение с практикой получается, как правило – огромное (динамик оказался немного другой, ящик чуть отличается по размеру, наполнитель не знаем какой и сколько, труба фазоинвертора чуть другая, не знаем акустического сопротивления и т.п.)

Существует простая методика для настройки фазоинвертора, при которой не требуется знать точные исходные данные динамиков, ящиков, а также не требуются сложные измерительные приборы или математические расчёты. Всё уже было давно продумано и проверено на практике!

Хочу рассказать о простой методике настройки фазоинвертора, которая даёт погрешность не более 5%. Методике, существующей более 30-ти лет. Я ей пользовался еще, будучи школьником.

Чем ящик с фазоинвертором отличается от закрытого ящика?

Любой динамик, как механическая система, имеет собственную резонансную частоту. Выше этой частоты динамик звучит «довольно гладко», а ниже – уровень, создаваемого им звукового давления, падает. Падает со скоростью 12 дБ на октаву (т.е. в 4 раза на двукратное снижение частоты). За «нижнюю границу воспроизводимых частот» принято считать частоту, на которой уровень падает на 6 дБ (т.е. в 2 раза).

АЧХ динамика в открытом пространстве

Установив динамик в ящик, его резонансная частота несколько повысится, за счёт того, что к упругости подвеса диффузора добавится упругость сжимаемого в ящике воздуха. Подъём резонансной частоты неизбежно «потянет за собой» вверх и нижнюю границу воспроизводимых частот. Чем меньше объём воздуха в ящике, тем выше его упругость, и, следовательно, выше резонансная частота. Отсюда и желание «сделать ящик побо-о-о-ольше».

Жёлтая линия – АЧХ динамика в закрытом ящике

Сделать ящик «побольше» в некоторой степени можно не увеличивая его физические размеры. Для этого ящик заполняют поглощающим материалом. Не будем вдаваться в физику этого процесса, но по мере увеличения количества наполнителя, резонансная частота динамика в ящике понижается (увеличивается «эквивалентный объём» ящика). Если наполнителя слишком много, то резонансная частота начинает повышаться снова.

Опустим влияние размеров ящика на другие параметры, такие как добротность. Оставим это опытным «колонкостроителям». В большинстве практических случаев, из-за ограниченного пространства, объём ящика получается довольно близкий к оптимальному (мы же не строим колонки размером со шкаф). И смысл статьи, не загружать вас сложными формулами и расчётами.

Отвлеклись. С закрытым ящиком всё понятно, а что даёт нам фазоинвертор? Фазоинвертор – это «труба» (не обязательно круглая, может быть и прямоугольного сечения и узкая щель) определённой длины, которая совместно с объёмом воздуха в ящике имеет собственный резонанс. На этом «втором резонансе» поднимается звуковая отдача колонки. Частоту резонанса выбирают несколько ниже частоты резонанса динамика в ящике, т.е. в области, где у динамика начинается спад звукового давления. Следовательно, там, где у динамика наблюдается спад, появляется подъём, который в какой-то степени этот спад компенсирует, расширяя нижнюю граничную частоту воспроизводимых частот.

Красная линия – АЧХ динамика в закрытом ящике с фазоинвертором

Стоит отметить, что ниже частоты резонанса фазоинвертора спад звукового давления будет круче, чем у закрытого ящика и составит 24 дБ на октаву.

Таким образом, фазоинвертор позволяет расширить диапазон воспроизводимых частот в сторону нижних частот. Так как же выбрать частоту резонанса фазоинвертора?

Если частота резонанса фазоинвертора будет выше оптимальной, т.е. она будет находиться близко к резонансной частоте динамика в ящике, то мы получим «перекомпенсацию» в виде выпирающего горба на частотной характеристике. Звучание будет бочкообразным. Если частоту выбрать слишком низкую, то подъём уровня не будет ощущаться, т.к. на низких частотах отдача динамика падает слишком сильно (недокомпенсировали).

Голубые линии – не оптимальная настройка фазоинвертора

Это очень тонкий момент – или фазоинвертор даст эффект, или не даст никакого, или, наоборот, испортит звук! Частоту фазоинвертора нужно выбирать очень точно! Но где взять эту точность в гаражно-домашних условиях?

На самом деле, коэффициент пропорциональности между частотой резонанса динамика в ящике и частотой резонанса фазоинвертора, в подавляющем большинстве реальных конструкций составляет 0,61 – 0,65, и если принять его равным 0,63, то ошибка составит не более 5%.

1. Виноградова Э.Л. «Конструирование громкоговорителей со сглаженными частотными характеристиками», Москва, изд. Энергия, 1978

2. «Ещё о расчёте и изготовлении громкоговорителя», ж. Радио, 1984, №10

3. «Настройка фазоинверторов», ж. Радио, 1986, №8

Теперь перенесём теорию на практику – так нам ближе.

Как измерить резонансную частоту динамика в ящике? Как известно, на резонансной частоте, «модуль полного электрического сопротивления» (Impedance) звуковой катушки возрастает. Грубо говоря – сопротивление растёт. Если для постоянного тока оно составляет, например, 4 Ома, то на резонансной частоте оно вырастет Ом до 20 - 60. Как это измерить?

Для этого, последовательно с динамиком нужно включить резистор номиналом на порядок выше собственного сопротивления динамика. Нам подойдёт резистор номиналом 100 – 1000 Ом. Измеряя напряжение на этом резисторе, мы можем оценивать «модуль полного электрического сопротивления» звуковой катушки динамика. На частотах, где сопротивление динамика высокое – напряжение на резисторе будет минимальным, и наоборот. Так, а чем измерить?

Измерение импеданса динамика

Абсолютные значения нам не важны, нам нужно лишь найти максимум сопротивления (минимум напряжения на резисторе), частоты довольно низкие, поэтому пользоваться можно обычным тестером (мультиметром) в режиме измерения переменного напряжения. А откуда взять источник звуковых частот?

Конечно, в качестве источника лучше использовать генератор звуковых частот… Но оставим это профессионалам. Нам же «никто не запрещает» создать компакт-диск с записанным рядом звуковых частот, созданный в какой-либо компьютерной программе, например, CoolEdit или Adobe Audition. Даже я, имея измерительные приборы дома, создал CD на 99 треков, по несколько секунд каждый, с рядом частот от 21 до 119 Гц, с шагом 1 Гц. Очень удобно! Вставил в магнитолу, прыгаешь по трекам – меняешь частоту. Частота равна номеру трека + 20. Очень просто!

Процесс измерения резонансной частоты динамика в ящике выглядит следующим образом: «затыкаем» отверстие фазоинвертора (кусок фанеры и пластилин) включаем CD на воспроизведение, устанавливаем приемлемую громкость, и, не меняя её, «прыгаем» по трекам и находим трек, на котором напряжение на резисторе минимально. Всё – частота нам известна.

Кстати, параллельно, измеряя резонансную частоту динамика в ящике, мы можем подобрать оптимальное количество наполнителя для ящика! Постепенно добавляя количество наполнителя, смотрим изменение резонансной частоты. Находим то оптимальное количество, при котором резонансная частота минимальна.

Зная значение «резонансной частоты динамика в ящике с заполнителем» легко найти оптимальную резонансную частоту фазоинвертора. Просто умножьте её на 0,63. Например, получили резонансную частоту динамика в ящике 62 Гц – следовательно, оптимальная частота резонанса фазоинвертора будет около 39 Гц.

Теперь «открываем» отверстие фазоинвертора, и, изменяя длину трубы (тоннеля) или её сечение, настраиваем фазоинвертор на требуемую частоту. Как это сделать?

Да с помощью того же резистора, тестера и CD! Только нужно помнить, что на частоте резонанса фазоинвертора, наоборот, «модуль полного электрического сопротивления» катушки динамика падает до минимума. Поэтому, искать нам нужно не минимум напряжения на резисторе, а, наоборот максимум – первый максимум, находящийся ниже частоты резонанса динамика в ящике.

Естественно, частота настройки фазоинвертора будет отличаться от требуемой. И поверьте – очень сильно… Обычно, в сторону низких частот (недокомпенсация). Для увеличения частоты настройки фазоинвертора необходимо укорачивать тоннель, либо уменьшать площадь его поперечного сечения. Делать это нужно постепенно, по полсантиметра…

Примерно так будет выглядеть в области нижних частот модуль полного электрического сопротивления динамика в ящике с оптимально настроенным фазоинвертором:

Вот, и вся методика. Очень простая, и в то же время, дающая довольно точный результат.

Я не проголосовал ни за, ни против. За не могу по причинам неверия в прибор. Против из за
чувства товарищества. Можете заклеймить меня позором за второе.
Могу сразу сказать, генератором резонансных частот(ГРЧ) не пользовался и даже не собирал. Как он на практике работает не знаю. Причина в том, что на тот момент у меня уже был генератор и милливольтметр, а прочитав статью Голунчикова не понял каким образом с помощью ГРЧ можно настроить ФИ правильно. И теперь не понимаю. Знаком, но не работал практически.
Давайте задумаемся и внимательно почитаем, что написано в статьях:
В.Бурундуков пишет, что с помощью данного прибора можно быстро измерить резонансную частоту акустического агрегата. Хорошо, а каким образом? Запустили генератор, он загенерил, и что? Как можно определить эту частоту? На слух? Конкретно сколько там герц?
Может кто нибудь ответить?
Далее он пишет, что резонансные частоты определяют с помощью соответствующих измерительных приборов. Приехали. Резонансные частоты уже известны. Скорее всего динамика и без ящика. И речь скорее всего о сравнении того и этого. Т.е до конца не понятен смысл применения устройства.
А деле настройки ФИ как раз все понятно, во всех статьях четко написано: генерация возникает на частоте резонанса громкоговорителя в соответствующем объеме. Т.е это не
резонансная частота динамика в открытом пространстве, это резонанс системы. Ставим дин в большой объем-резонанс один, берем объем поменьше, резонас другой.
Правильно или нет?
Времена были давние, про Тиля со Смоллом мало кто знал, по крайней мере математический расчет ФИ был недоступен. Были разные методики, это не важно.
Громкоговоритель Голунчикова возможно и можно приемлимо настроить, там все таки объем ящика не маленький, да еще до отказа заполненный звукопоглотителем. т.е резонанс дина в ящике ненамного должен повыситься. Видимо тоже самое касается других крупных АС.
Едем дальше. Нам предлагают настроить ФИ на резонансную частоту динамика в ящике.
Пусть. Пусть Fs (резонанс в свободном пространстве), равный около 30гц станет в ящике равным,...ну 40 Гц.Резонанс в ящике обозначим Fc. В принципе нормально, настроив ФИ на эту частоту ничего гадкого не произойдет. Работать будет, не вопрос. Не совсем точно, но если учитывать еще и помещение и местоположение АС все хорошо. Не гладкая теоретическая АЧХ не пугает, все равно в помещении она на НЧ напоминает горы.

Теперь возьмем другой пример и попробуем настроить таким же образом АС Салтыкова.
Объем около 9л. Дин 6ГД-6 или 10ГД-34. Резонанс (Fs) этих динов около 80 Гц. Редкие экзэмпляры пониже. Но редкие. Итак, в ящике 9 литров резонанс уйдет выше 80 Гц.
Надеюсь с этим спорить никто не будет? Вот и на эту частоту и настроится ФИ при применении этого прибора. А надо, как вы помните надо (по моему) около 50-55Гц.
Как вам?
Укажите в чем я не прав?

Теперь о современном. По авторитетным источникам (Виноградова и Алдошина достаточно авторитетны, если не легендарны) есть параметр полной добротности равный 0.383 , при котором ФИ настраивается на резонансную частоту дина в открытом пространстве (не в ящике). При этом объем ящика берется меньше эквивалентного объема дина в 1.41раза.
Т.е гибкость воздуха в ящике меньше соответствующего параметра дина.
Наверно можно высчитать случаи, когда ФИ нужно настраивать на резонанс дина в ящике, думаю этих случаев сочетаний парметров единицы.
Если же добротность больше 0.383 то всегда ФИ настраивается ниже чем Fs. В обязательном порядке.
По большому счету ФИ будет работать всегда, исключение только случай, когда настроено так низко, что ФИ становится закрытым ящиком с дырой. Но это маловероятный случай.
Если вся цепочка (усилитель, кабель до АС, и АС) построены нормально, может даже и горб
на АЧХ не повредит. Может даже и повышенная добротность дина не помеха. Если остальные компоненты (УМ и кабель) с этим справятся, ничего страшного в кривой АЧХ нет.
Если конечно, слуху нравиться. Все равно, везде окончательная настройка ФИ идет на слух.

Вот как то так. По моему получается, что прибор бесполезен. Ни быстро измерить, ни настроить.

Магические формулы

Одно из наиболее часто встречающихся пожеланий в электронной почте автора - привести «магическую формулу», по которой читатель ACS мог бы сам рассчитать фазоинвертор. Это, в принципе, нетрудно. Фазоинвертор представляет собой один из случаев реализации устройства под названием «резонатор Гельмгольца». Формула его расчета не намного сложнее самой распространенной и доступной модели такого резонатора. Пустая бутылочка из-под кока-колы (только обязательно бутылка, а не алюминиевая банка) - именно такой резонатор, настроенный на частоту 185 Гц, это проверено. Впрочем, резонатор Гельмгольца намного древнее даже этой, постепенно выходящей из употребления упаковки популярного напитка. Однако и классическая схема резонатора Гельмгольца схожа с бутылкой (рис. 1). Для того чтобы такой резонатор работал, важно, чтобы у него был объем V и тоннель с площадью поперечного сечения S и длиной L. Зная это, частоту настройки резонатора Гельмгольца (или фазоинвертора, что одно и то же) теперь можно рассчитать по формуле:

где Fb - частота настройки в Гц, с - скорость звука, равная 344 м/с, S - площадь тоннеля в кв. м, L - длина тоннеля в м, V - объем ящика в куб. м. = 3,14, это само собой.

Эта формула действительно магическая, в том смысле, что настройка фазоинвертора не зависит от параметров динамика, который будет в него установлен. Объем ящика и размеры тоннеля частоту настройки определяют раз и навсегда. Все, казалось бы, дело сделано. Приступаем. Пусть у нас есть ящик объемом 50 литров. Мы хотим превратить его в корпус фазоинвертора с настройкой на 50 Гц. Диаметр тоннеля решили сделать 8 см. По только что приведенной формуле частота настройки 50 Гц получится, если длина тоннеля будет равна 12,05 см. Аккуратно изготавливаем все детали, собираем их в конструкцию, как на рис. 2, и для проверки измеряем реально получившуюся резонансную частоту фазоинвертора. И видим, к своему удивлению, что она равна не 50 Гц, как полагалось бы по формуле, а 41 Гц. В чем дело и где мы ошиблись? Да нигде. Наш свежепостроенный фазоинвертор оказался бы настроен на частоту, близкую к полученной по формуле Гельмгольца, если бы он был сделан, как показано на рис. 3. Этот случай ближе всего к идеальной модели, которую описывает формула: здесь оба конца тоннеля «висят в воздухе», относительно далеко от каких-либо преград. В нашей конструкции один из концов тоннеля сопрягается со стенкой ящика. Для воздуха, колеблющегося в тоннеле, это небезразлично, из-за влияния «фланца» на конце тоннеля происходит как бы его виртуальное удлинение. Фазоинвертор окажется настроенным так, как если бы длина тоннеля была равна 18 см, а не 12, как на самом деле.

Заметим, что то же самое произойдет, если тоннель полностью разместить снаружи ящика, снова совместив один его конец со стенкой (рис. 4). Существует эмпирическая зависимость «виртуального удлинения» тоннеля в зависимости от его размеров. Для круглого тоннеля, один срез которого расположен достаточно далеко от стенок ящика (или других препятствий), а другой находится в плоскости стенки, это удлинение приблизительно равно 0,85D.

Теперь, если подставить в формулу Гельмгольца все константы, ввести поправку на «виртуальное удлинение», а все размеры выразить в привычных единицах, окончательная формула для длины тоннеля диаметром D, обеспечивающего настройку ящика объемом V на частоту Fb, будет выглядеть так:

Здесь частота - в герцах, объем - в литрах, а длина и диаметр тоннеля - в миллиметрах, как нам привычнее.

Полученный результат ценен не только тем, что позволяет на этапе расчета получить значение длины, близкое к окончательной, дающей требуемое значение частоты настройки, но и тем, что открывает определенные резервы укорочения тоннеля. Почти один диаметр мы уже выиграли. Можно укоротить тоннель еще больше, сохранив ту же частоту настройки, если сделать фланцы на обоих концах, как показано на рис. 5.

Теперь, кажется, все учтено, и, вооруженные этой формулой, мы представляемся себе всесильными. Именно здесь нас и ждут трудности.

Первые трудности

Первая (и главная) трудность заключается в следующем: если относительно небольшой по объему ящик требуется настроить на довольно низкую частоту, то, подставив в формулу для длины тоннеля большой диаметр, мы и длину получим большую. Попробуем подставить диаметр поменьше - и все получается отлично. Большой диаметр требует большой длины, а маленький - как раз небольшой. Что же тут плохого? А вот что. Двигаясь, диффузор динамика своей тыльной стороной «проталкивает» практически несжимаемый воздух через тоннель фазоинвертора. Поскольку объем колеблющегося воздуха постоянен, то скорость воздуха в тоннеле будет во столько раз больше колебательной скорости диффузора, во сколько раз площадь сечения тоннеля меньше площади диффузора. Если сделать тоннель в десятки раз меньшего размера, чем диффузор, скорость потока в нем окажется большой, и, когда она достигнет 25 - 27 метров в секунду, неизбежно появление завихрений и струйного шума. Великий исследователь акустических систем Р. Смолл показал, что минимальное сечение тоннеля зависит от диаметра динамика, наибольшего хода его диффузора и частоты настройки фазоинвертора. Смолл предложил совершенно эмпирическую, но безотказно работающую формулу для вычисления минимального размера тоннеля:

Формулу свою Смолл вывел в привычных для него единицах, так что диаметр динамика Ds, максимальный ход диффузора Xmax и минимальный диаметр тоннеля Dmin выражаются в дюймах. Частота настройки фазоинвертора - как обычно, в герцах.

Теперь все выглядит не так радужно, как прежде. Очень часто оказывается, что, если правильно выбрать диаметр тоннеля, он выходит невероятно длинным. А если уменьшить диаметр, появляется шанс, что уже на средней мощности тоннель «засвистит». Помимо собственно струйных шумов, тоннели небольшого диаметра обладают еще и склонностью к так называемым «органным резонансам», частота которых намного выше частоты настройки фазоинвертора и которые возбуждаются в тоннеле турбулентностями при больших скоростях потока.

Столкнувшись с такой дилеммой, читатели ACS обычно звонят в редакцию и просят подсказать им решение. У меня их три: простое, среднее и экстремальное.

Простое решение для небольших проблем

Когда расчетная длина тоннеля получается такой, что он почти помещается в корпусе и требуется лишь незначительно сократить его длину при той же настройке и площади сечения, я рекомендую вместо круглого использовать щелевой тоннель, причем размещать его не посреди передней стенки корпуса (как на рис. 6), а вплотную в одной из боковых стенок (как на рис. 7). Тогда на конце тоннеля, находящемся внутри ящика, будет сказываться эффект «виртуального удлинения» из-за находящейся рядом с ним стенки. Опыты показывают, что при неизменной площади сечения и частоте настройки тоннель, показанный на рис. 7, получается примерно на 15% короче, чем при конструкции, как на рис. 6. Щелевой фазоинвертор, в принципе, менее склонен к органным резонансам, чем круглый, но, чтобы обезопасить себя еще больше, я рекомендую устанавливать внутри тоннеля звукопоглощающие элементы, в виде узких полосок фетра, наклеенных на внутреннюю поверхность тоннеля в районе трети его длины. Это - простое решение. Если его недостаточно, придется перейти к среднему.

Среднее решение для проблем побольше

Решение промежуточной сложности заключается в использовании тоннеля в форме усеченного конуса, как на рис. 8. Мои эксперименты с такими тоннелями показали, что здесь можно уменьшить площадь сечения входного отверстия по сравнению с минимально допустимой по формуле Смолла без опасности возникновения струйных шумов. Кроме того, конический тоннель намного менее склонен к органным резонансам, нежели цилиндрический.

В 1995 году я написал программу для расчета конических тоннелей. Она заменяет конический тоннель последовательностью цилиндрических и путем последовательных приближений вычисляет длину, необходимую для замены обычного тоннеля постоянного сечения. Программа эта сделана для всех желающих, и ее можно взять на сайте журнала ACS http://www.audiocarstereo.it в разделе ACS Software. Маленькая программка, работает под DOS, можно скачать и посчитать самому. А можно поступить по-другому. При подготовке русской редакции этой статьи результаты вычислений по программе CONICO были сведены в таблицу, из которой можно взять готовый вариант. Таблица составлена для тоннеля диаметром 80 мм. Это значение диаметра подходит для большинства сабвуферов с диаметром диффузора 250 мм. Рассчитав по формуле требуемую длину тоннеля, найдите это значение в первом столбце. Например, по вашим расчетам оказалось, что нужен тоннель длиной 400 мм, например, для настройки ящика объемом 30 литров на частоту 33 Гц. Проект нетривиальный, и разместить такой тоннель внутри такого ящика будет непросто. Теперь смотрим в следующие три столбца. Там приведены рассчитанные программой размеры эквивалентного конического тоннеля, длина которого будет уже не 400, а всего 250 мм. Совсем другое дело. Что означают размеры в таблице, показано на рис. 9.

Таблица 2 составлена для исходного тоннеля диаметром 100 мм. Это подойдет для большинства сабвуферов с головкой диаметром 300 мм.

Если решите пользоваться программой самостоятельно, помните: тоннель в форме усеченного конуса делается с углом наклона образующей a от 2 до 4 градусов. Этот угол больше 6 - 8 градусов делать не рекомендуется, в этом случае возможно возникновение завихрений и струйных шумов на входном (узком) конце тоннеля. Однако и при небольшой конусности уменьшение длины тоннеля получается довольно значительным.

Тоннель в форме усеченного конуса не обязательно должен иметь круглое сечение. Как и обычный, цилиндрический, его иногда удобнее делать в виде щелевого. Даже, как правило, удобнее, ведь тогда он собирается из плоских деталей. Размеры щелевого варианта конического тоннеля приведены в следующих столбцах таблицы, а что эти размеры означают, показано на рис. 10.

Замена обычного тоннеля коническим способна решить много проблем. Но не все. Иногда длина тоннеля получается настолько большой, что укорочения его даже на 30 - 35% недостаточно. Для таких тяжелых случаев есть...

Экстремальное решение для больших проблем

Экстремальное решение заключается в применении тоннеля с экспоненциальными обводами, как показано на рис. 11. У такого тоннеля площадь сечения сначала плавно уменьшается, а потом так же плавно возрастает до максимальной. С точки зрения компактности для данной частоты настройки, устойчивости к струйным шумам и органным резонансам экспоненциальный тоннель не имеет себе равных. Но он не имеет себе равных и по сложности изготовления, даже если рассчитать его обводы по такому же принципу, как это было сделано в случае конического тоннеля. Для того чтобы преимуществами экспоненциального тоннеля все же можно было воспользоваться на практике, я придумал его модификацию: тоннель, который я назвал «песочные часы» (рис. 12). Тоннель-песочные часы состоит из цилиндрической секции и двух конических, откуда внешнее сходство с древним прибором для измерения времени. Такая геометрия позволяет укоротить тоннель по сравнению с исходным, постоянного сечения, по меньшей мере, в полтора раза, а то и больше. Для расчета песочных часов я тоже написал программу, ее можно найти там же, на сайте ACS. И так же, как для конического тоннеля, здесь приводится таблица с готовыми вариантами расчета.

Что означают размеры в таблицах 3 и 4, станет ясно из рис. 13. D и d - это диаметр цилиндрической секции и наибольший диаметр конической секции, соответственно, L1 и L2 - длины секций. Lmax - полная длина тоннеля в форме песочных часов, приводится просто для сравнения, насколько короче его удалось сделать, а вообще, это L1 + 2L2.

Технологически песочные часы круглого поперечного сечения делать не всегда просто и удобно. Поэтому и здесь можно выполнить его в виде профилированной щели, получится, как на рис. 14. Для замены тоннеля диаметром 80 мм я рекомендую высоту щели выбрать равной 50 мм, а для замены 100-миллиметрового цилиндрического тоннеля - равной 60 мм. Тогда ширина секции постоянного сечения Wmin и максимальная ширина на входе и выходе тоннеля Wmax будут такими, как в таблице (длины секций L1 и L2 - как в случае с круглым сечением, здесь ничего не меняется). Если понадобится, высоту щелевого тоннеля h можно изменить, одновременно скорректировав и Wmin, Wmax так, чтобы значения площади поперечного сечения (h.Wmin, h.Wmax) остались неизменными.

Вариант фазоинвертора с тоннелем в форме песочных часов я применил, например, когда делал сабвуфер для домашнего театра с частотой настройки 17 Гц. Расчетная длина тоннеля получилась больше метра, а рассчитав «песочные часы», я смог сократить ее почти вдвое, при этом шумов не было даже при мощности около 100 Вт. Надеюсь, вам это тоже поможет...

 


Читайте:



Деньги из воздуха, или как обмануть государство на десятки миллионов

Деньги из воздуха, или как обмануть государство на десятки миллионов

Оттяг - 10 способов как наебать кондуктора на деньги (или хотя бы на часть денег). (C) Федоров "Chasm" Владимир. Фускин кул оттяк!!! Всем...

Обзор комикса «Новый Призрачный Гонщик Читать комикс совершенно новый призрачный гонщик

Обзор комикса «Новый Призрачный Гонщик Читать комикс совершенно новый призрачный гонщик

Мнение о комиксе «Новый Призрачный Гонщик» от сценариста Фелипе Смита.Пока Призрачный Гонщик готовится сделать свой дебют в сериале «Агенты...

Гудит гидроусилитель руля

Гудит гидроусилитель руля

Гидравлический усилитель рулевого управления значительно облегчает работу водителю, с гидравликой руль поворачивается легко, даже если машина стоит...

Звуковые сигнализаторы автомобиля Звуковой сигнал на поворотники своими руками

Звуковые сигнализаторы автомобиля Звуковой сигнал на поворотники своими руками

Большинство автомобилей оборудованы автоматическим устройством, выключающим сигналы поворота после завершения поворота. Это пластмассовый рычажок...

feed-image RSS