Главная - Ремонт
Для чего рассчитывают токи короткого замыкания. Ток короткого замыкания и его расчет. Ударный ток короткого замыкания. Некоторые уточнения для расчета тока короткого замыкания

Основной причиной нарушения нормального режима работы системы электроснабжения (СЭС) является возникновение коротких замыканий (КЗ) в сети или элементах электрооборудования вследствие повреждения изоляции или неправильных действий обслуживающего персонала. Для снижения ущерба, обусловленного выходом из строя электрооборудования при протекании токов КЗ, а также для быстрого восстановления нормального режима работы СЭС необходимо правильно определять токи КЗ и по ним выбирать электрооборудование, защитную аппаратуру и средства ограничения токов КЗ.

Коротким замыканием называется непосредственное соединение между любыми точками разных фаз, фазы и нулевого провода или фазы с землей, не предусмотренное нормальными условиями работы установки.

Основные виды коротких замыканий в электрических системах:

3. Однофазное КЗ , при котором происходит замыкание одной из фаз на нулевой провод или землю. Условное обозначение точки однофазного КЗ
Токи, напряжения, мощности другие величины, относящиеся однофазному КЗ, обозначаются
,
,
и т.д.

Встречаются и другие виды КЗ, связанные с обрывами проводов и одновременными замыканиями провод различных фаз.

Трёхфазное КЗ является симметричным, поскольку при нём все три фазы оказываются в одинаковых условиях. Все остальные виды коротких замыканий являются несимметричным, так как при них фазы не остаются в одинаковых условиях, вследствие чего системы токов и напряжений получаются искаженными.

При возникновении КЗ общее электрическое сопротивление цепи системы электроснабжения уменьшается, вследствие чего токи в ветвях системы резко увеличиваются, а напряжения на отдельных участках системы снижаются.

Элементы электрических систем обладают активными и реактивными (индуктивными или ёмкостными) сопротивлениями, поэтому при внезапном нарушении нормального режима работы (при возникновении КЗ) электрическая система представляет собой колебательный контур. Токи в ветвях системы и напряжения в отдельных её частях будут изменяться в течение некоторого времени после возникновения КЗ в соответствии с параметрами этого контура. Т.е. за время короткого замыкания в цепи поврежденного участка протекает переходный процесс.

При КЗ в каждой из фаз наряду с периодической составляющей тока (слагающей тока переменного знака) имеет место апериодическая составляющая тока (слагающая постоянного знака), которая также может изменять знак, но через большие промежутки времени по сравнению с периодической.

Мгновенное значение полного тока КЗ для произвольного момента времени:

где - апериодическая составляющая тока КЗ в момент времени
;- угловая частота переменного тока;- фазовый угол напряжения источника в момент времени
;- угол сдвига тока в цепи КЗ относительно напряжения источника;- постоянная времени цепи КЗ;
- индуктивность, индуктивное и активное сопротивление цепи КЗ.

Периодическая составляющая тока КЗ (рис. 1)одинакова для всех трёх фаз и определяется для любого момента времени значением ординаты огибающей, деленной на
. Апериодическая составляющаятока КЗ различна для всех трёх фаз (см. рис. 2)и изменяется в зависимости от момента возникновения КЗ.

Рис. 3. Изменение во времени периодической составляющей тока КЗ:

а) при питании от генераторов без АВР; б) при питании от генераторов с АВР; в) при питании от энергосистемы.

Амплитуда периодической составляющей изменяется в переходном процессе в соответствии с изменением ЭДС источника КЗ (рис. 3).При мощности источника, соизмеримой с мощностью элемента, где рассматривается КЗ, а также отсутствииАРВ генераторов ЭДС источника уменьшается от начального значения
до установившегося
, вследствие чего амплитуда периодической составляющей изменяется от
(сверхпереходной ток КЗ) до
(установившейся то КЗ) (рис. 3,а).

При наличии АРВ генераторов периодическая составляющая тока КЗ изменяется, как показано на рис. 3,б.Снижение периодической составляющей в начальный период КЗ объясняется инерционностью действия устройства АРВ, которое начинает работать через0,08-0,3 с после возникновения КЗ. С повышением тока возбуждения генератора увеличивается его ЭДС и соответственно периодическая составляющая тока КЗ вплоть до установившегося значения.

Если мощность источника существенно больше мощности элемента, где рассматривается КЗ, что соответствует источнику неограниченной мощности, у которого внутреннее сопротивление равно нулю, то ЭДС источника является постоянной. Поэтому периодическая составляющая тока КЗ неизменна в течение переходного процесса (рис. 3,в), т. е.

Апериодическая составляющая тока КЗ различна во всех фазах и может изменяться в зависимости от момента возникновения КЗ и предшествующего режима (в пределах периода). Скорость затухания апериодической составляющей тока зависит от соотношения между активным и индуктивным сопротивлением цепи КЗ, т.е. от постоянной: чем больше активное сопротивление цепи, тем интенсивнее затухание. Апериодическая составляющая тока КЗ заметно проявляется лишь в первые 0,1-0,2 с после возникновения КЗ. Обычноопределяется по наибольшему возможному мгновенному значению, которое (в цепях с преобладающим индуктивным сопротивлением
)имеет место в момент прохождения напряжения источника через нулевое значение (
)и отсутствия тока нагрузки. При этом
.В данном случае полный ток КЗ имеет наибольшее значение. Указанные условия являются расчетными при определении токов КЗ.

Максимальный мгновенный ток КЗ имеет место примерно через полпериода, т.е. через 0,01 спосле возникновения КЗ. Наибольший возможный мгновенный ток КЗ называют ударным током (рис. 3).Его определяют для момента
с:

где
- ударный коэффициент, зависящий от постоянной времени цепи КЗ.

Действующее значение полного тока КЗ для произвольного момента времени определяют из выражения:

(3.4)

где - действующее значение периодической составляющей тока КЗ;- действующее значение апериодической составляющей, равной

(3.5)

Наибольшее действующее значение ударного тока за первый период от начала процесса КЗ:

(3.6)

Мощность КЗ для произвольного момента времени:

(3.7)

Источники питания КЗ . При расчёте токов КЗ принимают, что источниками питания места КЗ являются турбо- и гидрогенераторы, синхронные компенсаторы и двигатели, асинхронные двигатели. Влияние асинхронных двигателей учитывается только в начальный момент времени и в тех случаях, когда они подключены непосредственно к месту КЗ.

Определяемые величины . При расчёте токов КЗ определяют следующие величины:

-начальное значение периодической составляющей тока КЗ (начальное значение сверхпереходного тока КЗ);

- ударный ток КЗ, необходимый для проверки электрических аппаратов, шин и изоляторов на электродинамическую устойчивость;

- наибольшее действующее значение ударного тока КЗ, необходимое для проверки электрических аппаратов на устойчивость течение первого периода процесса КЗ;

- значениедля
, необходимое для проверки выключателей по отключаемому ими току;

-действующее значение установившегося тока КЗ, по которому проверяют электрические аппараты, шины, проходные изоляторы и кабели на термическую устойчивость;

- мощность КЗ для времени
;определяется для проверки выключателей по предельно допустимой отключаемой мощности. Для быстродействующих выключателей это время может уменьшаться до 0,08 с.

Допущения и расчётные условия . Для облегчения вычислений токов КЗ принимают ряд допущений:

1)ЭДС всех источников считаются совпадающими по фазе;

2)ЭДС источников, значительно удаленных от места КЗ (
),считают неизменными;

3)не учитывают поперечные ёмкостные цепи КЗ (кроме воздушных линий 330 кВи выше и кабельных линий 110 кВи выше) и токи намагничивания трансформаторов;

4)активное сопротивление цепи КЗ учитывают только при соотношении
, гдеи- эквивалентные активные и реактивные сопротивления короткозамкнутой цепи;

5)в ряде случаев не учитывают влияние нагрузок (или учитывают приближенно), в частности влияние мелких асинхронных и синхронных двигателей.

В соответствии с целью определения токов КЗ устанавливают расчётные условия, которые включают в себя составление расчётной схемы, определение режима КЗ, вида КЗ, мест расположения точек КЗ и расчётного времени КЗ.

При определении режима КЗ в зависимости от цели расчёта определяют возможные максимальные и минимальные уровни токов КЗ. Так, например, проверку электротехнического оборудования на электродинамическое и термическое действие токов КЗ осуществляют по наиболее тяжелому режиму -максимальному, когда через проверяемый элемент протекает наибольший ток КЗ. Наоборот, по минимальному режиму, соответствующему наименьшему току КЗ, осуществляют расчёт и проверку работоспособности устройств релейной защиты и автоматики.

Выбор вида КЗ определяется целью расчёта токов КЗ. Для определения электродинамической стойкости аппаратов и жестких шин в качестве расчётного принимают трёхфазное КЗ; для определения термической стойкости аппаратов, проводников -трёхфазное или двухфазное КЗ в зависимости от тока. Проверку отключающей и включающей способностей аппаратов проводят по трёхфазному или по однофазному току КЗ на землю (в сетях с большими токами замыкания на землю) в зависимости от его значения.

Выбор вида КЗ в расчётах релейной защиты определяется её функциональным назначением и может быть трёх-, двух-, однофазным и двухфазным КЗ на землю.

Места расположения точек КЗ выбирают таким образом, чтобы при КЗ проверяемое электрооборудование, проводники находились в наиболее неблагоприятных условиях. Например, для выбора коммутационной аппаратуры необходимо выбирать место КЗ непосредственно на их выходных зажимах, выбор сечения кабельной линии производят по току КЗ в начале линии. Места расположения точек КЗ при расчётах релейной защиты определяют по ее назначению -в начале или конце защищаемого участка.

Расчётное время КЗ. Действительное время, в течение которого происходит КЗ, определяется длительностью действия защиты и отключающей аппаратуры,

. (3.8)

В расчётах используют приведенное (фиктивное) время -промежуток времени, в течение которого установившийся ток КЗ выделяет то же количество тепла, которое должен выделить фактически проходящий ток КЗ за действительное время КЗ.

Приведенное время, соответствующее полному току КЗ,

. (3.9)

где - приведённое время для периодической составляющей тока КЗ;

- приведённое время для апериодической составляющей тока КЗ.

При действительном времени
с приведённое время для периодической составляющей тока КЗ определяют по номограммам.

При действительном времени
с
, где- значение приведённого времени для
с.

Определение приведённого времени для апериодической составляющей , а производится при
по формуле:

, (3.10)

где - отношение начального сверпереходного тока к установившемуся в месте КЗ (
).

При
- по формуле:

. (3.11)

При действительном времени более 1 сек . или
приведённым временем апериодической составляющей тока КЗ () можно пренебречь.

Однажды одной даме, не очень сведущей в электротехнике, монтер сообщил причину пропадания света в ее квартире. Это оказалось короткое замыкание, и женщина потребовала немедленно его удлинить. Над этой историей можно посмеяться, но лучше все же рассмотреть эту неприятность подробнее. Специалистам-электрикам и без этой статьи известно, что это за явление, чем оно грозит и как рассчитать ток короткого замыкания. Изложенная ниже информация адресована людям, не имеющим технического образования, но, как и все прочие, не застрахованным от неприятностей, связанных с эксплуатацией техники, машин, производственного оборудования и самых обычных бытовых приборов. Каждому человеку важно знать, что такое короткое замыкание, каковы его причины, возможные последствия и методы его предотвращения. Не обойтись в этом описании и без знакомства с азами электротехнической науки. Не знающий их читатель может заскучать и не дочитать статью до конца.

Популярное изложение закона Ома

Независимо от того, каков характер тока электрической цепи, он возникает только в том случае, если существует разница потенциалов (или напряжение, это то же самое). Природа этого явления может быть объяснена на примере водопада: если есть разность уровней, вода течет в каком-то направлении, а когда нет - она стоит на месте. Даже школьникам известен закон Ома, согласно которому, ток тем больше, чем выше напряжение, и тем меньше, чем выше сопротивление, включенное в нагрузку:

I - величина тока, которую иногда называют «силой тока», хотя это не совсем грамотный перевод с немецкого языка. Измеряется в Амперах (А).

На самом деле силой (то есть причиной ускорения) ток сам по себе не обладает, что как раз и проявляется во время короткого замыкания. Этот термин уже стал привычным и употребляется часто, хотя преподаватели некоторых вузов, услышав из уст студента слова «сила тока» тут же ставят «неуд». «А как же огонь и дым, идущие от проводки во время короткого замыкания? - спросит настырный оппонент, - Это ли не сила?» Ответ на это замечание есть. Дело в том, что идеальных проводников не существует, и нагрев их обусловлен именно этим фактом. Если предположить, что R=0, то и тепло бы не выделялось, как ясно из закона Джоуля-Ленца, приведенного ниже.

U - та самая разница потенциалов, называемая также напряжением. Измеряется в Вольтах (у нас В, за границей V). Его также называют электродвижущей силой (ЭДС).

R - электрическое сопротивление, то есть способность материала препятствовать прохождению тока. У диэлектриков (изоляторов) оно большое, хотя и не бесконечное, у проводников - малое. Измеряется в Омах, но оценивается в качестве удельной величины. Само собой, что чем толще провод, тем он лучше проводит ток, а чем он длиннее, тем хуже. Поэтому удельное сопротивление измеряется в Омах, умноженных на квадратный миллиметр и деленных на метр. Кроме этого, на его величину влияет температура, чем она выше, тем больше сопротивление. Например, золотой проводник длиной в 1 метр и сечением в 1 кв. мм при 20 градусах Цельсия обладает общим сопротивлением 0,024 Ома.

Есть еще формула закона Ома для полной цепи, в нее введено внутреннее (собственное) сопротивление источника напряжения (ЭДС).

Две простых, но важных формулы

Понять причину, по которой возникает ток короткого замыкания, невозможно без усвоения еще одной нехитрой формулы. Мощность, потребляемая нагрузкой, равна (без учета реактивных составляющих, но о них позже) произведению тока на напряжение.

P - мощность, Ватт или Вольт-Ампер;

U - напряжение, Вольт;

I - ток, Ампер.

Мощность бесконечной не бывает, она всегда чем-то ограничена, поэтому при ее фиксированной величине при увеличении тока напряжение уменьшается. Зависимость этих двух параметров рабочей цепи, выраженная графически, называется вольт-амперной характеристикой.

И еще одна формула, необходимая для того, чтобы произвести расчет токов короткого замыкания, это закон Джоуля-Ленца. Она дает представление о том, сколько тепла выделяется при сопротивлении нагрузке, и очень проста. Проводник будет греться с интенсивностью, пропорциональной величинам напряжения и квадрата тока. И, конечно же, формула не обходится без времени, чем дольше раскаляется сопротивление, тем больше оно выделит тепла.

Что происходит в цепи при коротком замыкании

Итак, читатель может считать, что освоил все главные физические закономерности для того, чтобы разобраться в том, какой может быть величина (ладно, пусть будет сила) тока короткого замыкания. Но сначала следует определиться с вопросом о том, что, собственно, это такое. КЗ (короткое замыкание) - это ситуация, при которой сопротивление нагрузки близко к нулю. Смотрим на формулу закона Ома. Если рассматривать его вариант для участка цепи, несложно понять, что ток будет стремиться к бесконечности. В полном варианте он будет ограничен сопротивлением источника ЭДС. В любом случае ток короткого замыкания очень велик, а по закону Джоуля-Ленца, чем он больше, тем сильнее греется проводник, по которому он идет. Причем зависимость не прямая, а квадратичная, то есть, если I увеличится стократно, то тепла выделится в десять тысяч раз больше. В этом и состоит опасность явления, приводящего порой к пожарам.

Провода накаляются докрасна (или добела), они передают эту энергию стенам, потолкам и другим предметам, которых касаются, и поджигают их. Если фаза в каком-то приборе касается нулевого проводника, возникает ток короткого замыкания источника, замкнутого на самого себя. Горючее основание электропроводки - страшный сон инспекторов пожарной охраны и причина многих штрафов, налагаемых на безответственных собственников зданий и помещений. И всему виной, конечно же, не законы Джоуля-Ленца и Ома, а пересохшая от старости изоляция, неаккуратно или безграмотно произведенный монтаж, повреждения механического характера или перегрузка проводки.

Однако и ток короткого замыкания, каким бы он ни был большим, также не бесконечен. На размеры бед, которые он может натворить, влияет продолжительность нагрева и параметры схемы электроснабжения.

Цепи переменного тока

Рассмотренные выше ситуации имели общий характер или касались цепей постоянного тока. В большинстве случаев электроснабжение и жилых, и промышленных объектов производится от сети переменного напряжения 220 или 380 Вольт. Неприятности с проводкой, рассчитанной на постоянный ток, чаще всего случаются в автомобилях.

Между этими двумя основными типами электропитания есть разница, и существенная. Дело в том, что прохождению переменного тока препятствуют дополнительные составляющие сопротивления, называемые реактивными и обусловленные волновой природой возникающих в них явлений. На переменный ток реагируют индуктивности и емкости. Ток короткого замыкания трансформатора ограничивается не только активным (или омическим, то есть таким, которое можно измерить карманным приборчиком-тестером) сопротивлением, но и его индуктивной составляющей. Второй тип нагрузки - емкостный. Относительно вектора активного тока векторы реактивных составляющих отклонены. Индуктивный ток отстает, а емкостный опережает его на 90 градусов.

Примером разницы поведения нагрузки, обладающей реактивной составляющей, может служить обычный динамик. Его некоторые любители громкой музыки перегружают до тех пор, пока диффузор магнитное поле не выбивает вперед. Катушка слетает с сердечника и тут же сгорает, потому что индуктивная составляющая ее напряжения уменьшается.

Виды КЗ

Ток короткого замыкания может возникать в разных цепях, подключенных к различным источникам постоянного или переменного тока. Проще всего дело обстоит с обычным плюсом, который вдруг соединился с минусом, минуя полезную нагрузку.

А вот с переменным током вариантов больше. Однофазный ток короткого замыкания возникает при соединении фазы с нейтралью или ее заземлении. В трехфазной сети может возникнуть нежелательный контакт между двумя фазами. Напряжение в 380 или более (при передаче энергии на большие расстояния по ЛЭП) вольт также может вызвать неприятные последствия, в том числе и дуговую вспышку в момент коммутации. Замкнуть может и все три (или четыре, вместе с нейтралью) провода одновременно, и ток трехфазного короткого замыкания будет течь по ним до тех пор, пока не сработает защитная автоматика.

Но и это еще не все. В роторах и статорах электрических машин (двигателей и генераторов) и трансформаторах порой случается такое неприятное явление, как межвитковое замыкание, при котором соседние петли провода образуют своеобразное кольцо. Этот замкнутый контур обладает крайне низким сопротивлением в сети переменного тока. Сила тока короткого замыкания в витках растет, это становится причиной нагрева всей машины. Собственно, если такая беда произошла, не следует ждать, пока оплавится вся изоляция и электромотор задымится. Обмотки машины нужно перематывать, для этого необходимо специальное оборудование. Это же касается и тех случаев, когда из-за «межвиткового» возник ток короткого замыкания трансформатора. Чем меньше обгорит изоляция, тем проще и дешевле будет перемотка.

Расчет величины тока при коротком замыкании

Каким бы ни было катастрофичным то или иное явление, для инженерной и прикладной науки важна его количественная оценка. Формула тока короткого замыкания очень похожа на закон Ома, просто к ней требуются некоторые пояснения. Итак:

I к.з.=Uph / (Zn + Zt),

I к.з. - величина тока короткого замыкания, А;

Uph - фазное напряжение, В;

Zn - полное (включая реактивную составляющую) сопротивление короткозамкнутой петли;

Zt - полное (включая реактивную составляющую) сопротивление трансформатора питания (силового), Ом.

Полные сопротивления определяются как гипотенуза прямоугольного треугольника, катеты которого представляют собой величины активного и реактивного (индуктивного) сопротивления. Это очень просто, нужно пользоваться теоремой Пифагора.

Несколько чаще, чем формула тока короткого замыкания, на практике используются экспериментально выведенные кривые. Они представляют собой зависимости величины I к.з. от длины проводника, сечения провода и мощности силового трансформатора. Графики представляют собой совокупность нисходящих по экспоненте линий, из которых остается лишь выбрать подходящую. Метод дает приблизительные результаты, но его точность вполне отвечает практическим потребностям инженеров по энергоснабжению.

Как проходит процесс

Кажется, что все происходит мгновенно. Что-то загудело, свет померк и тут же погас. На самом деле, как любое физическое явление, процесс можно мысленно растянуть, замедлить, проанализировать и разбить на фазы. До наступления аварийного момента цепь характеризуется установившимся значением тока, находящимся в пределах номинального режима. Внезапно полное сопротивление резко уменьшается до величины, близкой к нулю. Индуктивные составляющие (электродвигатели, дроссели и трансформаторы) нагрузки при этом как бы замедляют процесс роста тока. Таким образом, в первые микросекунды (до 0,01 сек) сила тока короткого замыкания источника напряжения остается практически неизменной и даже несколько снижается за счет начала переходного процесса. ЭДС его при этом постепенно достигает нулевого значения, затем проходит через него и устанавливается в каком-то стабилизированном значении, обеспечивающем протекание большого I к.з. Сам ток в момент переходного процесса представляет собой сумму из периодической и апериодической составляющих. Форма графика процесса анализируется, в результате чего можно определить постоянную величину времени, зависящую от угла наклона касательной к кривой разгона в точке ее перегиба (первой производной) и времени запаздывания, определяемого величиной реактивной (индуктивной) составляющей суммарного сопротивления.

Ударный ток КЗ

В технической литературе часто встречается термин «ударный ток короткого замыкания». Не следует пугаться этого понятия, оно вовсе не такое страшное и к поражению электричеством прямого отношения не имеет. Понятие это означает максимальное значение I к.з. в цепи переменного тока, достигающее своей величины обычно через полпериода после того, как возникла аварийная ситуация. При частоте 50 Гц период составляет 0,2 секунды, а его половина - соответственно 0,1 сек. В этот момент взаимодействие проводников, расположенных вблизи друг относительно друга, достигает наибольшей интенсивности. Ударный ток короткого замыкания определяется по формуле, которую в этой статье, предназначенной не для специалистов и даже не для студентов, приводить не имеет смысла. Она доступна в специальной литературе и учебниках. Само по себе это математическое выражение не представляет особой сложности, но требует довольно объемных комментариев, углубляющих читателя в теорию электроцепей.

Полезное КЗ

Казалось бы, очевидный факт состоит в том, что короткое замыкание - явление крайне скверное, неприятное и нежелательное. Оно может привести в лучшем случае к обесточиванию объекта, отключению аварийной защитной аппаратуры, а в худшем - к выгоранию проводки и даже пожару. Следовательно, все силы нужно сосредоточить на том, чтобы избежать этой напасти. Однако расчет токов короткого замыкания имеет вполне реальный и практический смысл. Изобретено немало технических средств, работающих в режиме высоких токовых значений. Примером может служить обычный сварочный аппарат, особенно дуговой, замыкающий в момент эксплуатации практически накоротко электрод с заземлением. Другой вопрос состоит в том, что режимы эти носят кратковременный характер, а мощность трансформатора позволяет выдерживать эти перегрузки. При сварке в точке касания окончания электрода проходят огромные токи (они измеряются в десятках ампер), в результате чего выделяется достаточно тепла для местного расплавления металла и создания прочного шва.

Методы защиты

В первые же годы бурного развития электротехники, когда человечество еще отважно экспериментировало, внедряя гальванические приборы, изобретало различные виды генераторов, двигателей и освещения, возникла проблема защиты этих устройств от перегрузок и токов короткого замыкания. Самое простое ее решение состояло в последовательной с нагрузкой установке плавких элементов, которые разрушались под воздействием резистивного тепла, в случае если ток превышал установленное значение. Такие предохранители служат людям и сегодня, их главные достоинства состоят в простоте, надежности и дешевизне. Но есть у них и недостатки. Сама простота «пробки» (так назвали держатели плавких ставок за их специфическую форму) провоцирует пользователей после ее перегорания не мудрствовать лукаво, а заменять вышедшие из строя элементы первыми попавшимися под руку проволочками, скрепками, а то и гвоздями. Стоит ли упоминать о том, что такая защита от токов короткого замыкания не выполняет своей благородной функции?

На промышленных предприятиях для обесточивания перегруженных цепей автоматические выключатели начали использовать раньше, чем в квартирных щитках, но в последние десятилетия «пробки» были в основном заменены ими. «Автоматы» намного удобнее, их можно не менять, а включить, устранив причину КЗ и дождавшись, когда тепловые элементы остынут. Контакты у них иногда подгорают, в этом случае их лучше заменить и не пытаться почистить или починить. Более сложные дифференциальные автоматы при высокой стоимости не служат дольше обычных, но функционально их нагрузка шире, они отключают напряжение в случае минимальной утечки тока «на сторону», например при поражении человека током.

В обыденной же жизни экспериментировать с коротким замыканием не рекомендуется.

Не обходится без расчетов. Одним из них является расчет токов короткого замыкания. В статье рассмотрим пример расчета в сетях 0,4кВ. Файл с примером расчета в Word вы сможете скачать ближе к концу статьи, а также выполнить расчет самостоятельно не покидая сайта (в конце статьи есть онлайн-калькулятор).

Исходные данные: ГРЩ здания запитан от трансформаторной подстанции с двумя трансформаторами по 630кВА.
где:
Е C – ЭДС сети;
R т, X т, Z т – активное, реактивное и полное сопротивления трансформатора;
R к, X к, Z к – активное, реактивное и полное сопротивления кабеля;
Z ц – сопротивление петли фаза-нуль для кабеля;
Z ш – сопротивление присоединения шин;
K1 – точка короткого замыкания на шинах ГРЩ.

Параметры трансформатора:
Номинальная мощность трансформатора S н = 630 кВА,
Напряжение короткого замыкания трансформатора U к% = 5,5%,
Потери короткого замыкания трансформатора P к = 7,6 кВт.

Параметры питающей линии:
Тип, число (N к) и сечение (S) кабелей АВВГнг 2x (4×185),
Длина линии L = 208 м

X т = 13,628 мОм



R т = 3,064 мОм

R к = 20,80 мОм

X к = 5,82 мОм

Сопротивление энергосистемы:
X c = 1,00 мОм

Суммарное реактивное сопротивление участка:
X Σ =X c +X т +X к =20,448 мОм

Суммарное активное сопротивление участка:
R Σ =R т +R к =23,864 мОм

Полное суммарное сопротивление:

R Σ =31,426 мОм



I K3 =7,35 кА (Icn)

i У =10,39 кА (Icu)



I K1 =4,09 кА

Чтобы не считать каждый раз вручную на калькуляторе и переносить цифры в Microsoft Word, я реализовал эти расчет прямо в Word. Теперь надо только ответить на вопросы, которые он задаёт. Вот так это выглядит:

Весь расчет занял меньше минуты.

Чтобы скачать пример расчета ТКЗ в Word, нажмите на кнопку:

Онлайн-калькулятор для расчет токов короткого замыкания

Для тех, кому нужно быстро рассчитать токи короткого замыкания, сделал калькулятор прямо на сайте. Теперь можете посчитать токи КЗ онлайн. Щелкайте переключателям, двигайте ползунки, выбирайте значения из списка — всё моментально автоматически пересчитается.

Удельные сопротивления меди и алюминия в онлайн-калькуляторе приняты в соответствии с рекомендациями ГОСТ Р 50571.5.52-2011, Часть 5-52 (1,25 удельного сопротивления при 20°С):

  • удельное сопротивление меди - 0,0225 Ом·мм/м
  • удельное сопротивление алюминия - 0,036 Ом·мм/м.

Если возможностей калькулятора вам недостаточно (нужно несколько участков кабелей разного сечения, у вас другие трансформаторы или просто расчет должен быть оформлен в Word), то смело нажимайте кнопку и заказывайте.

Расчет проводится для выбора и проверки уставок релейной защиты и автоматики или проверки параметров оборудования.

Введем ряд допущений, упрощающих расчет и не вносящих существенных погрешностей:

  • 1. Линейность всех элементов схемы;
  • 2. Приближенный учёт нагрузок;
  • 3. Симметричность всех элементов за исключением мест короткого замыкания;
  • 4. Пренебрежение активными сопротивлениями, если X/R>3;
  • 5. Токи намагничивания трансформаторов не учитываются;

Погрешность расчетов при данных допущениях не превышает 2ч5 %.

Расчет токов короткого замыкания упрощается при использовании схемы замещения. Расчет токов КЗ проводим в именованных единицах.

Расчетные точки короткого замыкания: К1 - на шинах НН; К2…К5 - в конце ВЛ.

Рисунок. 9.1. Схема замещения 10 кВ

Мощность трехфазного короткого замыкания:

где IкзВН - ток короткого замыкания на шинах высокого напряжения.

Параметры системы:

Где Ucp- среднее напряжение, кВ;

Мощность трёхфазного КЗ на шинах ВН подстанции, МВ·А

ЭДС системы:

Ес = Uср. (9.3)

Ес = 10,5 кВ.

Параметры силовых трансформаторов:

Активное сопротивление трансформатора, приведённое к стороне 10,5 кВ.

Реактивное сопротивление трансформатора, приведённое к стороне 10,5 кВ.

Параметры воздушной линии:

RВЛ = r0 l (9.6)

XВЛ = x0 l (9.7)

RВЛ = 0,72 11,21 = 8,07 Ом

XВЛ = 0,4 11,21 = 4,48 Ом

Параметры отходящих линий приведены в таблице 9.1.

Таблица 9.1. Параметры отходящих линий

Марка провода

ВЛ Некрасово

ВЛ Борисово

ВЛ Лукино

ВЛ Пожара

ВЛ Старина

ВЛ Прошино

Расчёт токов КЗ выполняется для напряжения той стороны, к которой приводятся сопротивления схемы.

где - полное суммарное эквивалентное сопротивление от источника питания до расчётной точки КЗ, Ом.

Установившееся значение тока при двухфазном КЗ определяется по значению тока трёхфазного КЗ:

Ударный ток:

где куд - ударный коэффициент.

Приведем пример расчета для ВЛ Лукино

Расчет токов КЗ сведен в таблицу 9.2.

Таблица 9.2. Расчет токов КЗ

I(3)кзmax, кА

I(3)кзmin, кА

ВЛ Некрасово

ВЛ Борисово

ВЛ Лукино

ВЛ Пожара

ВЛ Старина

ВЛ Прошино

Шины 10 кВ

Ток однофазного замыкания на землю определяется по формуле:

Iз(1) = 3 Uф щ? Суд L (9.13)

где Uф - напряжение фазы сети;

щ - угловая частота напряжения сети;

Суд - емкость 1 км фазы сети относительно земли, мкФ/км;

L - общая протяженность сети, км.

Но с точностью для практических расчетов, в том числе, для решения вопроса о необходимости компенсации емкостного тока замыкания на землю, расчет производим по формуле:

Где Uном - номинальное напряжение сети, кВ;

Lв - общая протяженность воздушных линий сети, км;

Lк - общая протяженность кабельных линий, км.

Определим ток однофазного замыкания на землю для отходящих линий 10 кВ. В ПУЭ оговорено: величина емкостного тока замыкания на землю для нормального режима сети. А в данном случае, нормальным режимом работы является раздельная работа силовых трансформаторов (секционные выключатели отключены).

Для отходящих линий 10 кВ:

Согласно ПУЭ п. 1.2.16 Компенсация емкостного тока замыкания на землю должна применяться при значениях этого тока в нормальных режимах: в сетях напряжением 3-20 кВ, имеющих железобетонные и металлические опоры на воздушных линиях электропередачи, и во всех сетях напряжением 35 кВ - более 10 А. В нашем случае компенсация не требуется.

Электрическая энергия несет в себе довольно высокую опасность, от которой не защищены ни работники отдельных подстанций, ни бытовые приборы. Ток короткого замыкания – это один из самых опасных видов электроэнергии, но существуют методы, как его контролировать, рассчитать и измерить.

Что это такое

Ток короткого замыкания (ТКЗ) – это резко возрастающий ударный электрический импульс. Главной его опасностью является то, что согласно закону Джоуля-Ленца такая энергия имеет очень высокий показатель выделения тепла. В результат короткого замыкания могут расплавиться провода или перегореть определенные электроприборы.

Фото – временная диаграмма

Он состоит из двух основных слагающих – апериодическая составляющая тока и вынужденная периодическая слагаемая.

Формула – периодическая Формула – апериодическая

По принципу, сложнее всего измерить именно энергию апериодического возникновения, которая является емкостной, доаварийной. Ведь именно в момент аварии разница между фазами имеет наибольшую амплитуду. Также его особенностью является не типичность возникновения этого тока в сетях. Схема его образования поможет показать принцип действия этого потока.


Сопротивление источников из-за высокого напряжения при КЗ замыкается на небольшом расстоянии или «накоротко» – поэтому это явление получило такое название. Бывает ток короткого трёхфазного замыкания, двухфазного и однофазного – здесь классификация происходит по количество замкнутых фаз. В некоторых случаях, КЗ может быть замкнут между фазами и на землю. Тогда, чтобы его определить, нужно будет отдельно учитывать заземление.


Фото – результат КЗ

Также можно распределить КЗ по типу подключения электрооборудования:

  1. С заземлением;
  2. Без него.

Для полного объяснения этого явления предлагаем рассмотреть пример. Скажем, есть конкретный потребитель тока, который подключен к локальной линии электропередач при помощи отпайки. При правильной схеме общее напряжение в сети равно разнице ЭДС у источника питания и снижению напряжения в локальных электрических сетях. Исходя из этого, для определения силы тока короткого замыкания может использоваться формула Ома:

R = 0; Iкз = Ɛ/r

Здесь r –сопротивление КЗ.

Если подставить определенные значения, то можно будет определить ток замыкания в любой точке на всей линии электропередач. Здесь не нужно проверять кратность КЗ.

Способы расчета

Предположим, что замыкание уже произошло в трехфазной сети, к примеру, на подстанции или на обмотках трансформатора, как тогда производится расчет токов короткого замыкания:

Формула – ток трехфазного замыкания

Здесь U20 – это напряжение обмоток трансформатора, а Z T – сопротивление определенной фазы (которая была повреждена в КЗ). Если напряжение в сетях – это известный параметр, рассчитывать требуется сопротивление.

Каждый электрический источник, будь-то трансформатор, контакт аккумуляторной батареи, электрические провода – имеет свой номинальный уровень сопротивления. Иными словами, Z у каждого свое. Но они характеризуются сочетанием активных сопротивлений и индуктивных. Также есть емкостные, но они не имеют значение при расчете токов высокой силы. Поэтому многими электриками используется упрощенный способ вычисления этих данных: арифметический расчет сопротивления постоянного тока на последовательно соединенных участках. Когда эти характеристики известны, не составит труда по формуле ниже рассчитать полное сопротивление для участка или целой сети:

Формула полного заземления

Где ε – это ЭДС, а r – величина сопротивления.

Учитывая, что во время перегрузок сопротивление равняется нулю, решение принимает следующий вид:

I = ε/r = 12 / 10 -2

Исходя из этого, сила при коротком замыкании этого аккумулятора равна 1200 Ампер.

Таким образом можно также рассчитать ток КЗ для двигателя, генератора и других установок. Но на производстве не всегда есть возможность рассчитывать допустимые параметры для каждого отдельного электрического устройства. Помимо этого, следует учитывать, что при несимметричных замыканиях нагрузки имеют разную последовательность, для учета которой требуется знать cos φ и сопротивление. Для расчета используется специальная таблица ГОСТ 27514-87, где указываются эти параметры:

Также существует понятие односекундного КЗ, здесь формула силы тока при коротком замыкании определяется при помощи специального коэффициента:

Формула – коэффициент КЗ

Считается, что в зависимости от сечения кабеля, КЗ может пройти незаметно для проводки. Оптимальным является длительность замыкания до 5 секунд. Взято из книги Небрат «Расчет КЗ в сетях»:

Сечение, мм 2 Длительность КЗ, допустимая для конкретного типа проводов
Изоляция ПВХ Полиэтилен
Жилы медь Алюминий Медь Алюминий
1,5 0,17 нет 0,21 нет
2,5 0,3 0,18 0,34 0,2
4 0,4 0,3 0,54 0,36
6 0,7 0,4 0,8 0,5
10 1,1 0,7 1,37 0,9
16 1,8 1,1 2,16 1,4
25 2,8 1,8 3,46 2,2
35 3,9 2,5 4,8 3,09
50 5,2 3 6,5 4,18
70 7,5 5 9,4 6,12
95 10,5 6,9 13,03 8,48
120 13,2 8,7 16,4 10,7
150 16,3 10,6 20,3 13,2
185 20,4 13,4 25,4 16,5
240 26,8 17,5 33,3 21,7

Эта таблица поможет узнать ожидаемую условную длительность КЗ в нормальном режиме работы, амперметраж на шинах и различных типах проводов.

Если рассчитывать данные по формулам нет времени, то используется специальное оборудование. К примеру, большой популярностью у профессиональных электриков пользуется указатель Щ41160 – это измеритель тока короткого замыкания фаза-ноль 380/220В. Цифровой прибор позволяет определить и рассчитать силу КЗ в бытовых и промышленных сетях. Такой измеритель можно купить в специальных электротехнических магазинах. Эта методика хороша, если нужно быстро и точно определить уровень тока петли или отрезка цепи.

Также используется программа «Аврал», которая быстро может определить термическое действие КЗ, показатель потерь и силу тока. Проверка производится в автоматическом режиме, вводятся известные параметры и она сама рассчитывает все данные. Это проект платный, лицензия стоит около тысячи рублей.

Видео: защита электрической сети от короткого замыкания

Защита и указания по выбору оборудования

Несмотря на всю опасность этого явления, все же есть способ, как ограничить или свести к минимуму вероятность возникновения авариных ситуаций. Очень удобно использовать электрический аппарат для ограничения короткого замыкания, это может быть токоограничивающий реактор, который значительно снижает термическое действие высоких электрических импульсов. Но для бытового использования этот вариант не подойдет.


Фото – схема блока защиты от кз

В домашних условиях часто можно встретить использование автомата и релейной защиты. Эти расцепители имеют определенные ограничения (максимальный и минимальный ток сети), при превышении которых отключают питание. Автомат позволяет определять допустимый уровень ампер, что помогает повысить безопасность. Выбор производится среди оборудования с высшим классом защиты, нежели нужно. Например, в сети 21 ампер рекомендуется использовать автомат для отключения 25 А.

 


Читайте:



Разница между вольтом и ваттом

Разница между вольтом и ваттом

Занимаясь проектированием электрических систем, необходимо грамотно оперировать такими величинами, как Амперы, Ватты и Вольты. Кроме того, нужно...

Генератор импульсных токов

Генератор импульсных токов

Требования к генераторам импульсов (ГИ) включают в себя необходимость достижения высокого КПД. Кроме того, они определяются свойствами...

Схемы генераторов импульсов

Схемы генераторов импульсов

В один прекрасный день мне понадобился срочно генератор прямоугольных импульсов со следующими характеристиками:--- Питание: 5-12в ---...

Выбираем рога для велоруля

Выбираем рога для велоруля

Рога на руль могут быть самые разные, поэтому выбирать их нужно очень внимательно. Они различаются по длине и форме, материалу и размеру. Есть...

feed-image RSS