Главная - Правовые вопросы
Устройство мягкого включения умзч. Плавное включение усилителя. Подборка схем Плавный пуск усилителя мощности схема

М. СИРАЗЕТДИНОВ,г. Уфа
Радио, 2000 год, №9

При сборке мощных УНЧ всегда встает вопрос о защите от импульсных перегрузок в момент включения . Как правило выходной каскад любого мощного усилителя питается от двухполярного источника в котором устанавливаются конденсаторы очень большой емкости (до 10 000 мкФ а порою и выше). При включении блока питания через них начинает протекать очень большой зарядный ток что создает значительную нагрузку на сам источник питания, да и для выходного каскада это тоже не сильно-то хорошо...

Выход из положения- так называемый "мягкий" запуск: плавная подача сетевого напряжения на сетевой трансформатор. В литературе рассматривалось достаточно много устройств и здесь представлено очередное из них.

Главная его отличительная особенность заключается в том что что здесь нарастание сетевого напряжения происходит действительно плавно, а не ступенчато как во многих подобных устройствах.

Схема устройства для мягкого включения УНЧ

Принципиальная схема устройства "мягкого" включения питания УМЗЧ показана на рисунке. Транзистор VT1 через диодный мост VD1-VD4 включен последовательно с первичной обмоткой трансформатора Т1 блока питания. Выбор полевого транзистора МОП-структуры с изолированным затвором обусловлен высоким входным сопротивлением его управляющей цепи, что позволяет уменьшить потребляемую мощность.

Узел управления состоит из цепей, формирующих напряжение на затворе транзистора VT1, и электронного ключа на транзисторах VT2, VT3. Первая цепь образована элементами VD5, C1, R1 - R3, VD7, С4, устанавливающими начальное напряжение на затворе транзистора VT1. Во вторую - входят элементы VD8, R4, R5, С2, СЗ, обеспечивающие плавное нарастание напряжения на затворе транзистора VT1. Стабилитрон VD6 ограничивает напряжение на затворе транзистора VT1 и защищает его от пробоя.

В исходном состоянии конденсаторы цепей узла управления разряжены, поэтому в момент замыкания контактов выключателя сетевого питания SB1 напряжение на затворе транзистора VT1 относительно его истока равно нулю и ток цепи исток-сток отсутствует. Это означает, что ток в первичной обмотке трансформатора Т1 и падение напряжения на ней также равны нулю. С приходом первого положительного полупериода сетевого напряжения конденсатор С1 начинает заряжатьсячерез цепь VD5, VD3 и в течение этого полупериода заряжается до амплитудного значения сетевого напряжения.

Стабилитрон VD7 стабилизирует напряжение на делителе R2R3. Напряжение на нижнем по схеме плече подстро-ечного резистора R3 определяет начальное напряжение затвор-исток транзистора VT1, которое устанавливается близким к пороговому значению 2...4 В. Через несколько периодов сетевого напряжения импульсы тока, протекающие через конденсатор С2, зарядят его до напряжения, превышающего напряжение отсечки транзистора VT3.

Электронный ключ на транзисторах VT2, VT3 закрывается, и конденсатор СЗ начинает заряжаться через цепь VD8, R4, R5, R3, VD3. Напряжение затвор-исток транзистора VT1 определяется в это время суммой напряжения на нижнем плече резистора R3 и плавно возрастающего напряжения на конденсаторе СЗ. По мере роста этого напряжения транзистор VT1 открывается и сопротивление его канала исток-сток становится минимальным. Соответственно напряжение на первичной обмотке трансформатора Т1 плавно увеличивается почти до величины сетевого напряжения. Дальнейший рост напряжения затвор-исток транзистора VT1 ограничивается стабилитроном VD6. В установившемся режиме падение напряжения на диодах моста VD1-VD4 и транзисторе VT1 не превышает 2...3 Вт, так что на дальнейшую работу блока питания УМЗЧ это практически не влияет. Длительность наиболее тяжелого режима работы транзистора VT1 не превышает 2...4 с, поэтому рассеиваемая им мощность невелика. Конденсатор С4 устраняет пульсации напряжения на переходе затвор-исток транзистора VT1. создаваемые импульсами зарядного тока конденсатора СЗ на нижнем плече резистора R3.

Электронный ключ на транзисторах VT2, VT3 быстро разряжает конденсатор СЗ после выключения блока питания УМЗЧ или при кратковременных перебоях в сети питания и подготавливает узел управления к повторному включению.

В авторском варианте устройства защиты использован импортный конденсатор производства фирмы Gloria (С1), а также отечественные: К53-1 (С2, С4) и К52-1 (СЗ). Все постоянные резисторы - МЛТ, подстроечный резистор R3 - СП5-3. Транзистор КП707В (VT1) может быть заменен на другой, например. КП809Д. Важно, чтобы сопротивление его канала в открытом состоянии было минимальным, а предельное напряжение исток-сток составляло не менее 350 В. Вместо транзистора КТ3102Б (VT2) допустимо использовать КТ3102В и КТ3102Д, а вместо КП103И(VTЗ)-КП103Ж.

Транзистор VT1 снабжен небольшим теплоотводом площадью 10...50см 2 .

Настройка устройства заключается в подборе оптимального положения движка подстроечного резистора R3. Первоначально его устанавливают в нижнее (по схеме) положение и через высокоомный делитель подключают к первичной обмотке трансформатора

Т1 осциллограф. Затем замыкают контакты выключателя SB1 и, перемещая движок резистора R3. наблюдают за процессом нарастания амплитуды напряжения на первичной обмотке трансформатора. Движок оставляют в таком положении, при котором временной интервал между включением SB1 и началом нарастания амплитуды напряжения на обмотке Т1 минимален. При необходимости следует подобрать емкость конденсатора СЗ.

Устройство испытывалось с макетом УМЗЧ, близким по структуре к усилителю, описанному в статье А. Орлова "УМЗЧ с однокаскадным усилением напряжения" (см. "Радио". 1997, № 12, с. 14 - 16). Выброс напряжения на выходе УМЗЧ при включении блока питания не превышал 1.5 В


Всем привет камрадам! История продолжается.
Сегодня у нас: усилитель мощности, мягкий старт, блок питания для усилителя мощности.

Усилитель мощности LM3886

Когда-то я делал усилитель на микросхеме , теперь пришло время послушать . Схема классическая, неинвертирующая. Выполнил некоторые общеизвестные рекомендации. Конденсатор C3 - фильтр от высокочастотных помех. R6 - защищает неинвертирующий вход в момент выключения системы (когда внутренняя система защиты от пониженного напряжения питания выключена, есть вероятность выхода микросхемы из строя). Диоды D1 и D2 защищают выходной каскад от ЭДС индуктивной нагрузки. Конденсаторы С5 - С8 лучше ставить с бОльшей ёмкостью, но у меня критически не хватало места, и я поставил всего лишь 200 мкФ.

Я взял на себя смелость и изменил коэффициент усиления схемы в сторону уменьшения (21 → 11). Говорят, с его уменьшением растет вероятность самовозбуждения усилителя, но у меня все хорошо даже без цепочки R9-R10-C9. Я её так и не подключил. И без нее все вроде отлично, по крайней мере, на слух. Дело в том, что при данном коэффициенте усиления и при уровне громкости 0 dB (значение регулятора громкости), получается максимальная неискаженная выходная мощность 2×45 Ватт (синус на резисторах в качестве нагрузки). См. осциллограммы в разделе «Измерения».

Если громче, то попадаем в клиппинг. Исключить клиппинг - это, пожалуй, самый простой шаг в сторону качественного звучания системы. Можно изменить коэффициент усиления усилителя, поставив делитель на входе усилителя мощности. Можно было ограничить уровень сигнала в самом регуляторе громкости (занизить максимально возможную громкость программно в параметрах). Здесь каждый решает сам, как лучше.

Входной сигнал «MUTE» используем для исключения различных переходных процессов при включении и выключении плеера. Чтобы усилитель включить, нужно через резистор соединить 7-й вывод микросхемы с отрицательным источником напряжения и обеспечить ток хотя бы 1 мА. Неудобно по сравнению с . Оптрон так и просился в схему. Напряжение 5V на разъём X2 придет с платы плавного пуска усилителя - см. рисунок 3.

Блок питания УЗМЧ


Рис. 3. Блок питания усилителя и схема плавного пуска


Обычно для первых запусков своих конструкций (усилителей, блоков питания) радиолюбители включают последовательно лампочку, чтобы ничего не стрельнуло в случае ошибок. Как-то раз я подумал - почему бы не оставить лампочку в устройстве навсегда. Только, естественно, лампочка должна быть маленькая, галогенная подойдет в самый раз.


Галогенная лампа 50 Вт на 220 В, тип G6.35

В моем предыдущем самодельном усилителе на я успешно обкатал схему плавного пуска на галогенной лампочке. Мне она так понравилась, что я решил применить ее вновь. Сразу отмечу, что лампочка со временем не перегорает, но при отсутствии аварийных ситуаций, все же, менее надежна, чем резистор.
Когда у меня вылетели (вероятно от статики), я понял, что данное решение работает ещё и как защита от короткого замыкания. Колонки при аварии не пострадали.

Суть схемы проста: балласт (лампочку) шунтируем, когда напряжения на выходных конденсаторах будут в норме (>27V). И наоборот – если устроить КЗ, то лампочка снова включается в цепь первичной обмотки трансформатора.

На каждое плечо БП установлена схема-компаратор на основе TL431. Оптрон OP1 обеспечивает небольшой гистерезис (меньше 15V - авария), OP2 - для удобства суммирования сигналов с 4–х плеч.

Схема начинает работать сразу после включения 5-вольтового блока питания аудиоплеера. Напряжение 5V подается на разъём X2, после чего реле К1 включает трансформатор через лампочку. После заряда конденсаторов на разъём X3 приходит сигнал, который выключает К1 и включает К2. Всё, плавный пуск завершен. Через некоторое время (задается цепочкой R2-C4) на разъёме X7 имеем 5V, которые открывают оптроны OP1 в усилителях мощности. При выключении аудиоплеера 5V на разъёме X2 исчезают и оба реле выключаются из-за отсутствия на них питания. Трансформатор полностью отключен!

Для снижения тепловой нагрузки на диоды - на каждый канал усилителя установлен отдельный выпрямитель.

Реализация. Фотки


Рис. 4. Трансформатор


Трансформатор мотал сам. Когда-то сохранил, не выбросил, сгоревший буржуйский трансформатор, железо в нём шикарное. Каркас сделал из стеклотекстолита, окно получилось больше, чем с родным каркасом. Каждый слой всех обмоток отдельно пропитан обмоточным лаком и индивидуально высушен в печке при 100°С.


Рис. 5. Плата плавного пуска (вид сверху)


Рис. 6. Плата плавного пуска (вид снизу)

Платы теперь я покрываю акриловым лаком PLASTIK 71. Платы, покрытые лаком, выглядят изумительно, рекомендую.


Рис. 7. Диодный мост (вид сверху)


Рис. 8. Диодные мосты (вид снизу)


Рис. 9. Усилитель мощности

Плата усилителя получилась на редкость извращенной, всё это из-за дефицита места в корпусе. Пришлось загибать выводы микросхемы и делать плату двусторонней. Платы левого и правого канала немного различаются, некоторые компоненты пришлось сдвинуть, так как упирались в плату плавного пуска.


Рис. 10. Выходные разъёмы


Выходные разъёмы выполнены из старых мощных советских (военных) разъёмов, точнее из их штырьков (папа/мама).


Рис. 11. Выходной разъём, установленный в корпус


Рис. 12. Разъёмы 220V и Ethernet

Измерения УМЗЧ


Рис. 13. Фото в момент теста максимально-возможной выходной мощности

Все измерения сделаны осциллографом при нагруженных каналах на резистивную нагрузку 7,8 Ом. Цель – определить максимальную мощность при данном блоке питания.


Рис. 14. Напряжение питания (холостой ход)

Интересно, насколько просядет напряжение питания под максимальной нагрузкой. Напомню, что во время измерения, трансформатор у меня будет нагружен двумя каналами, а измерения питания получаются на диодном мосту одного канала, так как у меня для каждого усилителя свой диодный мост.


Рис. 15. Просадка напряжения питания одного канала под нагрузкой 45 Вт

Напряжение просело на 3,6 V. Между максимальным выходным значением синуса и напряжением питания около 3 V. Можно было конечно сделать ещё чуть громче, но дальше начинается клиппинг.


Рис. 16. Пульсации напряжения питания под нагрузкой 45 Вт


Пульсации не больше 1 V, наблюдается небольшая модуляция 1 КГц (тестовый сигнал 1 КГц).


Рис 17. Выход L R каналов 1КГц


На рисунке 17 долгожданные синусы 1 КГц, 2×45 Вт. (45 = 18.8×18.8 / 7.8)


Рис. 18 Выход L, R каналов 20 КГц


Не помешает посмотреть спектр, к ПК подключать лень, надо делать делитель. Глянем осциллографом да и всё. См. рисунок 19.


Рис. 19. Спектр сигнала 1 КГц (сверху), 20 КГц (снизу)


В качестве спектроанализатора 8-битный осциллограф уступает звуковой карте. Но, по крайней мере, в диапазоне 60 dB катастрофы не случилось и слава Богу.

Одной из важнейших проблем, возникающих при конструировании радиоаппаратуры, является проблема обеспечения ее надежности. В основе решения этой проблемы лежат оптимальный расчет конструкции аппарата и хорошая наладка при его изготовлении. Однако даже в оптимально рассчитанном и налаженном аппарате всегда остается опасность выхода его из строя в момент включения сетевого питания. Наиболее велика эта опасность для аппаратуры с высоким энергопотреблением — усилителем мощности звуковой частоты (УМЗЧ).

Дело в том, что в момент включения сетевого питания элементы блока питания УМЗЧ испытывают значительные импульсные перегрузки по току. Наличие в фильтрах выпрямителей разряженных оксидных конденсаторов большой емкости (до десятков тысяч микрофарад) вызывает в момент включения питания практически короткое замыкание выхода выпрямителя.

При напряжении питания 45 В и емкости фильтрующего конденсатора 10000 мкФ ток зарядки такого конденсатора в момент включения питания может достигать 12 А. Практически в этот момент трансформатор блока питания работает в режиме короткого замыкания. Продолжительность указанного процесса невелика, однако вполне достаточна при определенных условиях для вывода из строя, как трансформатора питания, так и диодов выпрямителя.

Кроме блока питания, и сам УМЗЧ в момент включения питания испытывает значительные перегрузки. Они вызваны возникающими в нем нестационарными процессами из-за установления режимов активных элементов по току и напряжению и замедленного включения в работу встроенных систем обратных связей. И чем выше номинальное напряжение питания УМЗЧ, тем больше амплитуда таких перегрузок и соответственно выше вероятность возникновения повреждений элементов усилителя.

Конечно, и раньше делались попытки защитить УМЗЧ от перегрузок при включении питания. Было предложено устройство, защищавшее усилитель от перегрузок, выполненное в виде мощного двухполярного стабилизатора напряжения питания, который при включении в первый момент подавал на усилитель напряжение ±10 В, а затем постепенно повышал его до номинального значения ±32 В. По мнению автора этого устройства, оно позволило существенно улучшить надежность работы УМЗЧ и отказаться от использования в нем традиционных систем зашиты акустических систем от перегрузок при включении питания.

При бесспорных достоинствах этого устройства у него имеются и недостатки — устройство защищало только УМЗЧ, но оставляло без зашиты его блок питания, из-за сложности собственной конструкции само по себе являлось ненадежным.

Вашему вниманию предлагается простое и надежное устройство “мягкого” включения питания УМЗЧ, защищающее от перегрузок как сам УМЗЧ, так и его блок питания. Оно доступно для изготовления даже начинающему радиоконструктору и может быть использовано как при разработке новых образцов радиоаппаратуры, так и при модернизации существующих, в том числе и промышленного изготовления.

Принцип работы

Принцип работы устройства заключается в двухступенчатой подаче напряжения питания на первичную обмотку трансформатора блока питания УМЗЧ. В цепь первичной обмотки трансформатора блока питания последовательно включен мощный балластный резистор (рис.1). Величина его сопротивления рассчитана в соответственно с габаритной мощностью трансформатора таким образом, чтобы при включении напряжение переменного тока на первичной обмотке составляло примерно половину напряжения сети.

Тогда в момент включения соответственно в два раза будет меньше и переменное напряжение вторичных обмоток трансформатор, и напряжение питания УМЗЧ. За счет этого резко уменьшаются амплитуды импульсов тока и напряжения на элементах выпрямителя и УМЗЧ. Нестационарные процессы при пониженном напряжении питания протекают существенно «мягче».

Затем через несколько секунд после включения питания балластный резистор R1 замыкается контактной группой К1.1 и на первичную обмотку трансформатора питания подается полное напряжение сети. Соответственно восстанавливаются до номинальных значений напряжения блока питания.

К этому времени конденсаторы фильтров выпрямителя уже заряжены до половины штатного напряжения, что исключает возникновение мощных импульсов тока через вторичные обмотки трансформатора и диоды выпрямителя. В УМЗЧ к этому времени нестационарные процессы тоже закончены, включены системы обратных связей, и подача полного напряжения питания каких-либо перегрузок в УМЗЧ не вызывает.

При отключении сетевого питания контакты К1.1 размыкаются, балластный резистор снова оказывается подключенным последовательно с первичной обмоткой трансформатора и весь цикл может быть повторен. Само устройство «мягкого» включения питания состоит из бестрансформаторного блока питания, таймера, нагруженного на электромагнитное реле. Конструкция устройства и режимы его элементов выбраны с учетом максимального запаса надежности в эксплуатации. Схема его приведена на рис. 1.

При подаче на блок питания УМЗЧ выключателем SB1 напряжения сети через токоограничивающие элементы R2 и С2 одновременно оно подается на мостовой выпрямитель, собранный на диодах VD1 — VD4. Выпрямленное напряжение фильтруется конденсатором СЗ, ограничивается стабилитроном VD5 до величины 36В и подается на таймер, выполненный на транзисторе VT1. Протекающий через резисторы R4 и R5 ток заряжает конденсатор С4, по достижению на нем напряжения примерно 1,5 В транзистор VT1 переходит в открытое состояние — реле К1 срабатывает и контактами К1.1 шунтирует балластный резистор R1.

Детали

В конструкции устройства использовано герметичное электромагнитное реле РЭНЗЗ исполнения РФ4.510.021 с рабочим напряжением 27 В и током срабатывания 75 мА. Возможно использование и других типов реле, допускающих коммутирование индуктивной нагрузки переменного тока частотой 50 Гц не менее 2 А, например, РЭН18, РЭН19, РЭН34.

В качестве VT1 использован транзистор с большим значением параметра коэффициента передачи тока — КТ972А. Возможно применение транзистора КТ972Б. При отсутствии указанных транзисторов подойдут транзисторы со структурой проводимости р-n-р, например, КТ853А, КТ853Б, КТ973А, КТ973Б, но только в этом случае полярность всех диодов и конденсаторов данного устройства следует изменить на противоположную.

При отсутствии транзисторов с большим коэффициентом передачи тока можно использовать схему составного транзистора из двух транзисторов по схеме, приведенной на рис. 2. В качестве VT1 в этой схеме применимы любые кремниевые транзисторы с допустимым напряжением коллектор-эмиттер не менее 45 В и достаточно большим коэффициентом усиления по току, например, типов КТ5ОЗГ, КТ3102Б. В качестве транзистора VT2 — транзисторы средней мощности с такими же параметрами, например, КТ815В, КТ815Г, КТ817В, КТ817Г или аналогичные им. Подключение варианта составного транзистора производится в точках А-Б-В основной схемы устройства.

Кроме диодов КД226Д, в устройстве можно использовать диоды КД226Г, КД105Б, КД105Г. В качестве конденсатора С2 применен конденсатор типа МБГО с рабочим напряжением не менее 400 В. Параметры токоограничивающей цепи R2C2 обеспечивают максимальный переменный ток примерно 145 мА, что вполне достаточно, когда применяется электромагнитное реле с током срабатывания 75 мА.

Для реле с током срабатывания 130 мА (РЭН29) емкость конденсатора С2 потребуется увеличить до 4 мкФ. При использовании реле типа РЭН34 (ток срабатывания 40 мА) достаточно емкости 1 мкФ. Во всех вариантах изменения емкости конденсатора его рабочее напряжение должно составлять не менее 400 В. Кроме металлобумажных конденсаторов, неплохие результаты могут быть получены при использовании металлопленочных конденсаторов типов К73-11, К73-17, К73-21 и т.д.

В качестве балластного резистора R1 применен остеклованный проволочный резистор ПЭВ-25. Указанная номинальная мощность резистора рассчитана для использования совместно с трансформатором питания, имеющим габаритную мощность около 400 Вт. Для другого значения габаритной мощности и половинного напряжения первой ступени сопротивление резистора R1 может быть пересчитано по формуле:

R1 (Ом) = 48400 / Раб (Вт).

Настройка

Регулировка устройства сводится к установлению времени срабатывания таймера для задержки включения работы второй ступени. Это можно сделать подбором емкости конденсатора С5, поэтому целесообразно его составить из двух конденсаторов, что облегчит процесс регулировки.

Примечание: В авторском варианте устройства в цепи питания отсутствует плавкая вставка (предохранитель). В номинальном режиме работы она, конечно, не требуется. Но ведь всегда могут возникнуть нештатные аварийные ситуации — короткие замыкания, пробои элементов и др. т.к. автор и сам аргументирует необходимость использования своей конструкции именно такой ситуацией, тогда роль защитного элемента берет на себя резистор R2, он разогревается и сгорает.

Применение плавкой вставки при аварийных ситуациях вполне оправданно. Она дешевле, ее проще приобрести и время срабатывания настолько меньше, что другие элементы не успевают разогреться и причинить какой-то дополнительный ущерб. Ну и наконец, это общепринятый, отработанный много раз проверенный способ защиты устройств от возможных последствий неисправностей аппаратуры.

Литература:

  1. Сухов Н. УМЗЧ высокой верности. – Радио, 1989, № 6, 7.
  2. Клецов В. Усилитель НЧ с малыми искажениями. – Радио, 1983, № 7, с. 51-53; 1984, № 2, с. 63-64.

Привет, друзья!
Делал я как-то УНЧ с конденсаторами фильтра БП по 50.000 мкФ в плече. И задумал сделать плавный старт, т.к. предохранитель в 5 Ампер на входе трансформатора периодически сгорал при включении усилителя.
Протестировал разные варианты. Были разные наработки в этом направлении. Остановился на предлагаемой ниже схеме.

« - Семен Семёныч, я ж тебе говорил: без фанатизма!
Усилок на . Заказчик в однокомнатной хрущёвке живет.
А ты всё фильтр да фильтр…»

ОПИСАННАЯ НИЖЕ КОНСТРУКЦИЯ ИМЕЕТ ГАЛЬВАНИЧЕСКУЮ СВЯЗЬ С СЕТЬЮ 220V!
БУДЬТЕ ОСТОРОЖНЫ!

Сначала рассмотрим варианты исполнения силовой части, чтобы был понятен принцип. Затем перейдём к полной схеме устройства. Есть две схемы - с мостом и с двумя MOSFET-ами. Обе имеют преимущества и недостатки.


В этой схеме устранён описанный выше недостаток - нет моста. Падение напряжения на открытых транзисторах чрезвычайно мало, т.к. очень низко сопротивление «Исток-Сток».
Для надёжной работы желательно подобрать транзисторы с близким напряжением отсечки. Обычно у импортных полевиков из одной партии напряжения отсечки достаточно близки, но убедиться не помешает.
Для управления применяется слаботочная кнопка без фиксации. Я использовал обычную тактовую кнопку. При нажатии на кнопку таймер включается и останется включенным, пока кнопка не будет нажата ещё раз.

Кстати, это свойство позволяет применять устройство в качестве проходного выключателя в больших помещениях или длинных галереях, коридорах, на лестничных маршах . Параллельно установливаем несколько кнопок, каждой из которых независимо можно включать и выключать свет. При этом устройство ещё и защищает лампы накаливания , ограничивая бросок тока.
При применении в освещении допустимы не только лампы накаливания, но и всякие энергосберегайки, светодиоды с ИБП и пр. Устройство работает с любыми лампами. Для энергосберегаек и светодиодов я ставлю времязадающий конденсатор меньше раз в десять, ведь им нет необходимости так медленно стартовать, как лампам накаливания.

При времязадающем конденсаторе (лучше керамика, плёнка, но можно и электролит) C5 = 20 мкФ напряжение нелинейно нарастает ок.1,5 сек. V1 нужен для быстрой разрядки времязадающего конденсатора и, соответственно, быстрого отключения нагрузки.

Между общим проводом и 4-м выводом (Reset по низкому уровню) таймера можно подключить оптопару, которой будет управлять какой-нибудь модуль защиты. Тогда по сигналу аварии таймер сбросится и нагрузка (например, УМЗЧ) будет обесточена.

Вместо чипа 555 можно использовать другое управляющее устройство.

Применённые детали

Резисторы я использовал SMD1206, конечно можно ставить выводные 0.25 Вт. Цепочка R8-R9-R11 установлена из соображений допустимого напряжения резисторов и замеять её одним резистором подходящего сопротивления не рекомендуется.
Конденсаторы - керамика или электролиты, на рабочее напряжение 16, а лучше 25 Вольт.
Мосты выпрямительные любые, на необходимый ток и напряжение, например KBU810, KBPC306, BR310 и многие другие.
Стабилитрон на 12 Вольт, любой, например, BZX55C12.
Транзистор T1 IRF840 (8A, 500V, 0.850 Ом) достаточен при нагрузке до 100 Ватт. Если планируется большая нагрузка, то лучше поставить транзистор помощнее. Я ставил транзисторы IXFH40N30 (40 A, 300 V, 0,085 Ом). Хотя они рассчитаны на напряжение 300 В (запас маловат), за 5 лет ни один не сгорел.
Микросхема U1 – обязательно в СМОS-исполнении (не TTL): 7555, ICM7555, LMC555 и т.п.

К сожалению, чертёж ПП утрачен. Но устройство настолько простое, что желающим не составит труда развести печатку под свои детали. Желащие поделится своим чертежом с миром - сигнальте в комментах.

Схема работает у меня около 5 лет, неоднократно повторена в вариациях, и хорошо зарекомендовала себя.

Спасибо за внимание!

Перед конструкторами звукоусилительной аппаратуры почти всегда встает проблема защиты УМЗЧ и его блока питания от импульсных перегрузок в момент включения сетевого напряжения. На страницах журнала неоднократно публиковались описания подобных устройств. Однако одни из них защищают только сам УМЗЧ, оставляя без защиты блок питания, другие - обеспечивают не плавное, а ступенчатое нарастание напряжения сети. Этих недостатков нет у предлагаемого вниманию читателей устройства, реализующего "мягкое" включение УМЗЧ. В нем нет коммутирующего реле, что позволило повысить надежность узла защиты и уменьшить его габариты.

Принципиальная схема устройства "мягкого" включения питания УМЗЧ показана на рисунке. Транзистор VT1 через диодный мост VD1-VD4 включен последовательно с первичной обмоткой трансформатора Т1 блока питания. Выбор полевого транзистора МОП-структуры с изолированным затвором обусловлен высоким входным сопротивлением его управляющей цепи, что позволяет уменьшить потребляемую мощность.

Узел управления состоит из цепей, формирующих напряжение на затворе транзистора VT1, и электронного ключа на транзисторах VT2, VT3. Первая цепь образована элементами VD5, C1, R1 - R3, VD7, С4, устанавливающими начальное напряжение на затворе транзистора VT1. Во вторую - входят элементы VD8, R4, R5, С2, C3, обеспечивающие плавное нарастание напряжения на затворе транзистора VT1. Стабилитрон VD6 ограничивает напряжение на затворе транзистора VT1 и защищает его от пробоя.

В исходном состоянии конденсаторы цепей узла управления разряжены, поэтому в момент замыкания контактов выключателя сетевого питания SB1 напряжение на затворе транзистора VT1 относительно его истока равно нулю и ток цепи исток-сток отсутствует. Это означает, что ток в первичной обмотке трансформатора Т1 и падение напряжения на ней также равны нулю. С приходом первого положительного полупериода сетевого напряжения конденсатор С1 начинает заряжаться через цепь VD5, VD3 и в течение этого полупериода заряжается до амплитудного значения сетевого напряжения.

Стабилитрон VD7 стабилизирует напряжение на делителе R2R3. Напряжение на нижнем по схеме плече подстроечного резистора R3 определяет начальное напряжение затвор-исток транзистора VT1, которое устанавливается близким к пороговому значению 2...4 В. Через несколько периодов сетевого напряжения импульсы тока, протекающие через конденсатор С2, зарядят его до напряжения, превышающего напряжение отсечки транзистора VT3.

Электронный ключ на транзисторах VT2, VT3 закрывается, и конденсатор C3 начинает заряжаться через цепь VD8, R4, R5, R3, VD3. Напряжение затвор-исток транзистора VT1 определяется в это время суммой напряжения на нижнем плече резистора R3 и плавно возрастающего напряжения на конденсаторе C3. По мере роста этого напряжения транзистор VT1 открывается и сопротивление его канала исток-сток становится минимальным. Соответственно напряжение на первичной обмотке трансформатора Т1 плавно увеличивается почти до величины сетевого напряжения. Дальнейший рост напряжения затвор-исток транзистора VT1 ограничивается стабилитроном VD6. В установившемся режиме падение напряжения на диодах моста VD1-VD4 и транзисторе VT1 не превышает 2...3 Вт, так что на дальнейшую работу блока питания УМЗЧ это практически не влияет. Длительность наиболее тяжелого режима работы транзистора VT1 не превышает 2...4 с, поэтому рассеиваемая им мощность невелика. Конденсатор С4 устраняет пульсации напряжения на переходе затвор-исток транзистора VT1. создаваемые импульсами зарядного тока конденсатора C3 на нижнем плече резистора R3.

Электронный ключ на транзисторах VT2, VT3 быстро разряжает конденсатор C3 после выключения блока питания УМЗЧ или при кратковременных перебоях в сети питания и подготавливает узел управления к повторному включению.

В авторском варианте устройства защиты использован импортный конденсатор производства фирмы Gloria (С1), а также отечественные: К53-1 (С2, С4) и К52-1 (C3). Все постоянные резисторы - МЛТ, подстроечный резистор R3 - СП5-3. Транзистор КП707В (VT1) может быть заменен на другой, например. КП809Д. Важно, чтобы сопротивление его канала в открытом состоянии было минимальным, а предельное напряжение исток-сток составляло не менее 350 В. Вместо транзистора КТ3102Б (VT2) допустимо использовать КТ3102В и КТ3102Д, а вместо КП103И(VTЗ)-КП103Ж.

Транзистор VT1 снабжен небольшим теплоотводом площадью 10...50 см2.

Настройка устройства заключается в подборе оптимального положения движка подстроечного резистора R3. Первоначально его устанавливают в нижнее (по схеме) положение и через высокоомный делитель подключают к первичной обмотке трансформатора

Т1 осциллограф. Затем замыкают контакты выключателя SB1 и, перемещая движок резистора R3, наблюдают за процессом нарастания амплитуды напряжения на первичной обмотке трансформатора. Движок оставляют в таком положении, при котором временной интервал между включением SB1 и началом нарастания амплитуды напряжения на обмотке Т1 минимален. При необходимости следует подобрать емкость конденсатора C3.

Устройство испытывалось с макетом УМЗЧ, близким по структуре к усилителю, описанному в статье А. Орлова "УМЗЧ с однокаскадным усилением напряжения" (см. "Радио". 1997, № 12, с. 14 - 16). Выброс напряжения на выходе УМЗЧ при включении блока питания не превышал 1,5 В

 


Читайте:



Самый большой в мире пикап Ford, в котором может разместиться мини-гостиница Как называется модель огромный форд пикап

Самый большой в мире пикап Ford, в котором может разместиться мини-гостиница Как называется модель огромный форд пикап

Известно, что в США любовь к громадным внедорожникам и пикапам достигает своего апогея.Многие из них пользуются популярностью во всем мире. Другие,...

"движение без остановки запрещено" на железнодорожном переезде Что означает знак стоп на красном фоне

Добрый день, уважаемый читатель.При одновременно повороте налево никто из водителей не имеет преимущества в движении и в случае ДТП его виновниками...

Автомобиль на солнечных батареях: миф или реальность

Автомобиль на солнечных батареях: миф или реальность

Весь мир переживает топливный кризис: запасы нефти тают с каждым днем, а количество ее потребления, наоборот, растет. На мир надвигается...

Втсп двигатель принцип работы

Втсп двигатель принцип работы

Такой интересной темой и занимается сейчас American Superconductor. Ещё в 2003 году эта компания построила и испытала опытный 5-мегаваттный...

feed-image RSS